مقدمه
بعضی از تجهیزات الکترونیکی نیاز به منابع تغذیه با ولتاژ و جریان بالا دارند. بدین منظور باید ولتاژ AC شهر توسط ترانسفورماتور کاهنده به ولتاژ پایینتر تبدیل و سپس یکسوسازی شده و به وسیله خازن و سلف صاف و DC شود.
تا سال 1972 ، منابع تغذیه خطی برای بیشتر دستگاه های الکترونیکی مناسب بودند. اما با توسعه کاربرد مدارهای مجتمع ، لازم شد که خروجی این مدارها در برابر تغییرات جریان و یا ولتاژ شبکه برق بیشتر تثبیت گردد. آی سی های خانواده TTL به ولتاژ کاملا تثبیت شده 5V احتیاج دارند. به منظور بدست آوردن ولتاژ ثابت تر، یک سیستم کنترل فیدبک در آی سی ها ی تثبیت کننده به کار برده می شود. تا سال 1975 ، آی سی های موجود مثل 723 و CA3085 قادر به تثبیت ولتاژ ثابت مورد نظر نمونه برداری می کردند. این منابع، منابع تغذیه تثبیت شده خطی نامیده می شد.
امروزه تراشه های یکپارچه تنظیم ولتاژ برای جریانهای تا 5A در دسترس می باشد. این تراشه ها مناسب می باشند. اما راندمانی زیر 50% دارند و تلفات حرارتی آنها در بار کامل زیاد است.
منابع تغذیه سوئیچینگ دارای راندمان بالایی می باشند. این منابع در سال 1970 هنگامی که ترانزیستورهای سوئیچینگ سرعت بالا با ظرفیت زیاد در دسترس قرار گرفت، ابداع شدند. ولتاژ خروجی منابع تغذیه سوئیچینگ به وسیله تغییر چرخه کار (Duty Cycle) یا فرکانس سیگنال ترانزیستورهای کلید زنی کنترل می شود. البته می توان با تغییر هم زمان هر دوی آنها نیز ولتاژ خروجی را کنترل نمود.
یک منبع تغذیه سوئیچینگ (SMPS) شامل منطق کنترل (Control Logic) و نوسان ساز می باشد. نوسان ساز سبب قطع و وصل عنصر کنترل کننده (Control Element) می گردد. عنصر کنترل کننده معمولا یک ترانزیستور کلید زنی ، یک سلف و یک دیود می باشد. انرژی ذخیره شده در سلف با ولتاژ مناسب به بار واگذار می شود، با تغییر چرخه کار یا فرکانس کلید زنی، می توان انرژی ذخیره شده در هر سیکل و در نتیجه ولتاژ خروجی را کنترل نمود. با قطع و وصل ترانزیستور کلیدزنی ، عبور انرژی انجام و یا متوقف می شود. اما انرژی در ترانزیستور تلف نمی شود. با توجه به اینکه فقط انرژی مورد نیاز برای داشتن ولتاژ خروجی با جریان مورد نظر، کشیده می شودع راندمان بالایی بدست می آید. انرژی به صورت مقطعی تزریق می شود. اما ولتاژ خروجی به وسیله ذخیره خازنی ثابت باقی می ماند.
1-1: دلیل انتخاب SMPS و مقایسه آن با منابع تغذیه خطی:
انتخاب بین یک منبع تغذیه خطی یا سوئیچینگ می تواند بر اساس کاربرد آنها انجام می شود. هر یک مشخصات، مزایا و معایب خاص خود را دارند، همچنین حوزه های متعددی وجود دارد که تنها یکی از این دو نوع می تواند مورد استفاده قرار گیرند و یا کاربردهایی که یکی از بر دیگری برتری دارد.
مزایای منابع تغذیه خطی:
نخست سادگی (طرح مدار بسیار ساده است و با قطعات کمی به راحتی اجرا می شود).
دوم قابلیت تحمل بار زیاد نویز ناچیز یا کم در خروجی و زمان پاسخ دهی بسیار کوتاه.
برای توان های کمتر از 10W ارزانتر از مدارهای مشابه سوئیچینگ می شود.
معایب منابع تغذیه خطی:
تنها به صورت رگولاتور کاهنده قابل کاربرد هستند(ورودی حداقل باید 2 تا 3 ولت از خروجی بیشتر باشد).
عدم انعطاف پذیری تغذیه، افزودن هر خروجی مستلزم اضافه کردن سخت افزار زیادی است.
بهره متوسط چنین منابعی کم و نوعا 30% تا 40% است. این تلفات توان در ترانزیستور خروجی تولید حرارت می کند و نیاز به ترانزیستور قوی تر را مطرح می کند،در توانهای کمی بالا نیاز به گرماگیر بر روی ترانزیستورها دارد.
تمامی این معایب در منابع تغذیه های سوئیچینگ رفع شده است:
افزایش راندمان به حدود 68% تا 90% کارکرد ترانزیستور در نواحی قطع و اشباع به انتخاب حرارت گیر یا خنک کننده و ترانزیستور کوچکتر منجر شده است.
به دلیل اینکه قدرت خروجی از یک ولتاژ DC بریده شده که به شکل AC در یک قطعه مغناطیسی ذخیره می شود، تامین می گردد. لذا با اضافه کردن تنها یک سیم پیچ می توان خروجی دیگری را بدست آورد، که در مقام مقایسه بسیار ارزانتر و ساده تر تمام می شود.
به علاوه به دلیل افزایش فرکانس کاری به حدود 15KHz تا 60KHz اجزا ذخیره کننده انرژی می توانند خیلی کوچکتر انتخاب شوند:
برخلاف منابع تغذیه خطی، در توانهای خیلی بالا قابل استفاده هستند.
همه این موارد به کاهش هزینه و توان تلفاتی و افزایش بهره دهی و انعطاف پذیری منجر می شود. معایب این نوع منابع ناچیز بوده و به کمک طراحی بهینه قابل رفع می باشد.
از جمله معایب آن می توان به موارد زیر اشاره کرد:
طرح چنین منابعی اصولا مشکل و پیچیده است.
نویز قابل ملاحضه ای از آنها به محیط انتشار می یابد و این اشکالی است که نباید در مرحله طراحی نادیده گرفته شود.
به دلیل ماهیت کار این منابع که بر اساس برش یک ولتاژ C استوار است، زمان رسیدن ولتاژ خروجی به مقدار مطلوب در مقایسه با منابع تغذیه خطی زیاد است. این زمان اصطلاحا زمان پاسخ ناپایدار نامیده می شود.
هر یک از منابع حوزه های کاری خود را دارند، عموما برای مدارهای با راندمان و ولتاژ بالا مثل مدارهای تغذیه شونده با باطری های قابل حمل تغذیه سوئیچینگ برتری دارد، ولی برای ولتاژ های ثابت و کم منابع خطی ارزانتر و مناسبتر هستند.
راندمان SMPS به دلیل تلفات کمتر توان، بالاتر می باشد. وزن و اندازه آنها به خاطر ترانسفورماتورهای کوچکتر با هسته فریت سبکتر، کوچکتر می باشد. افزایش فرکانس ابعاد ترانسفورماتور را به ازای قدرتهای یکسان کاهش می دهد. از هسته های آهنی در فرکانسهای بیشتر از 400Hz به دلیل داغ شدن هسته نمی توان استفاده کرد.
در منابع تغذیه سوئیچینگ حذف ریپلهای خروجی به خوبی منابع تغذیه خطی انجام نمی گیرد زیرا خازنهای کوچک و با کیفیت بالا مورد نیاز است.
پارازیتهای RF به دلیل قطع و وصل جریانهای بالا یکی دیگر از معایب SMPS می باشد. این پارازیتها را می توان با پوشش هسته فریت و کل مدار کاهش داد. در تلویزیون، SMPS با فرکانس خط (15625Hz) سنکرون می شود و در نتیجه اثر کلیدزنی در صفحه تلویزیون ظاهر نمی شود.
امروزه، بیشتر تلویزیونهای رنگی فط از SMPS برای تغذیه لامپ و قسمتهای مختلف استفاده می کنند. کامپیوترهای شخصی نیز از SMPS برای تولید ولتاژهای 5V , 12V و 24V با جریان بالا استفاده می کنند. مهمترین مزیت SMPS ها، وزن کم آن می باشد.
2-1: چگونگی تنظیم خروجی در SMPS
تنظیم SMPS با تغییر نرخ on و یا سرعت تکرار کلیدزنی و یا هر دوی اینها انجام می گیرد. به هنگام تغذیه قدرت، جریان به سیم پیچ تزریق و در نتیجه انرژی در آن ذخیره می شود. سپس این انرژی از طریق دیودهای با سرعت بالا به خازنهای الکترولیت ذخیره کننده، واگذار می گردد. ولتاژ دو سر خازن صاف است . می تواند با DC را تغذیه کند. با افزایش بار، ولتاژ خروجی افت می کند. این افت، با افزایش پهنای پالس که سبب افزایش جریان سیم پیچ می شود، جبران می گردد. در واقع، افزایش پهنای پالس سبب می شود که انرژی بیشتری در هر دوره در میدان مغناطیسی ذخیره کردد.
چنانچه ولتاژ مورد نظر از مقدار مورد نظر بیشتر شود می توان با کاهش پهنای پالس مقدار انرا تنظیم نمود. امروزه مدارهای مجتمع برای انجام وظایف بالا در دسترس هستند. آی سی 2524 یا 3524 از این نوع می باشند. در فصل های بعد در مورد این آی سی و مشخصات آن به همراه نمونه منبع تغذیه سوئیچینگ توضیح داده می شود.
3-1: یک نمونه SMPS دارای چه مشخصاتی است؟
یک SMPS را می توان برای ولتاژ خروجی مورد نیاز طراحی نمود. SMPS دارای یک آی سی کنترل، یک یا دو ترانزیستور کلیدزنی، تعدادی دیود کلیدزنی سرعت بالا، مجموعه ای از خازنهای با کیفیت بالا، یک هسته فریت و تعدادی قطعه دیگر می باشد. مشخصات دقیقتر یک نمونه SMPS می تواند به قرار زیر باشد:
یک هسته از نوع LOT
یک ترانزیستور سوئیچینگ مانند BU208
یک مدولاتور پهنای پالس تنظیم کننده مانند آی سی SG3524
ویژگیها و تواناییهای مدار برای نمونه می تواند:
خروجی 5v , 5A برای کاربردهای کامپیوتری و دیجیتالی
خروجی و 1A برای مدارهای RS232 و خطی
جداسازی (ایزوله بودن) خروجی از تغذیه ورودی برق شهر
عمل جداسازی خروجی از ورودی با قرار دادن تعدادی سیم پیچ روی هسته فریت به آسانی انجام می گیرد. در بعضی از SMPS ها، حتی از ایزولاتور نوری نیز استفاده می شود زیرا مدار کنترل در ارتباط مستقیم با برق شهر است.
مدار کنترل، پالسهای کلیدزنی مناسب را تولید و از خروجی نیز نمونه برداری می کند. این نوع منابع تغذیه با ایزولاتور در تلویزیونهای رنگی و کامپیوتر به کار می روند.
برای تامین قدرت آی سی دو روش وجود دارد:
استفاده از خروجی خود SMPS
استفاده از یک منبع تغذیه جداگانه ، برای نمونه 150mA به وسیله ترانسفورماتور با ولتاژ نامی 220V/18V .
برای روش اول شدنی است اما در راه اندازی اولیه آن مشکل وجود دارد. روش دوم، نیاز به مدارات و قطعات اضافی مانند ترانسفورماتور و دیود یکسو ساز و خازن صافی حجیم الکترولیت است.
در قسمت کلید زنی سیم پیچها باید دارای اندوکتانس مناسب و مقاومت کم باشند. به ازای هر پالس تحریک، جریان بالایی به وسیله ترانزیستورهای کلیدزنی از سیم پیچها عبور می کند. پیک جریان، تابعی از ولتاژ ورودی، ولتاژ کلید، اندوکتانس سیم پیج و زمان روشن بودن ترانزیستورهای کلیدزنی می باشد.
با وصل ولتاژ تغذیه (ترانزیستور روشن) جریان در یک مدار R-L به صورت نمایی افزایش می یابد. با قطع تغذیه (ترانزیستور خاموش) ، ولتاژ بالایی القا می شود که دیود طرف دوم را روشن می کند و سپس جریان به سرعت به صفر می رسد. برای عبور جریان میرا شونده ، هنگام قطع ترانزیستور ، خازن و مقاومتی در نظر گرفته می شود. در صورت نبودن این عناصر، ولتاژ بسیار زیادی در کلکتور در لحظه قطع ترانزیستور ایجاد می شود. یک VDR نیز به قسمت قبلی اضافه می شود. انرژی هر سیکل برابر است با:
L اندوکتانس طرف اولیه می باشد. یکی از روشهای افزایش انرژی، داشتن L بزرگ است. ولتاژ تغذیه E برابر است با:
با بزرگ شدن L ، مقدار برای تغذیه داده شده ، افزایش می یابد. هنگام پاس روشن بودن، جریان I نمی تواند به طور کافی افزایش یابد. بنابراین مقدار ، کوچک است. اگر L ، خیلی کوچک باشد، I به مقدار افزایش می یابد.در این حالت سرعت رسیدن به مقدار نهایی زیاد است اما انرژی ذخیره شده کم است. R مقداری کوچک دارد . اندازه با توجه به جریان مجاز ضربه ای ترانزیستور های کلیدزنی تعیین می گردد.
برای داشتن بزرگ، سیم پیچ و مقاومتهای دیگر را کاهش دهید، از ترانزیستور با سرعت بالا استفاده نمایید و ولتاژ تغذیه را افزایش دهید. پیک ولتاژ را با یک شبکه سری R-C در کلکتور و امیتر ترانزیستور توان خروجی کنترل کنید. کاهش این مقاومت ، پیک ولتاژ را افزایش می دهد. این مقاومت تضعیف کننده معمولا حدود تا در نظر گرفته شود. مقدار خازن C می تواند حدود 2000PF باشد. ولتاژ آن به علت ارتباط مستقیم با ولتاژ بالا و همچنین تحت تاثیر جریانهای سوئیچ بودن ، باید بالا و حدود 2KV انتخاب شود.
جریان تحریک ترانزیستورهای کلیدزنی نیز عامل مهمی است. ترانزیستور کلیدزنی مناسب انتخاب کنید. برای نمونه BU208 دارای بهره جریان بزرگی نیست. بنابراین برای جریانهای بزرگ کلید، جریان بیس بزرگ لازم است. زمان صعود جریان کلکتور با افزایش جریان بیس زیاد می شود. اگر جریان کلکتور 100mA باشد، جریان تحریک بیس باید حدود 25mA در نظر گرفته شود. به ازای جریان کلکتور 1A ، جریان بیس باید حدود 250mA باشد. به ازای جریان تحریک 25mA ، ترانزیستور کاملا روشن نمی شود و تلفات قدرت خواهد داشت. چنانچه ترانزیستور زیاد داغ شود، باید جریان تحریک بیس را افزایش داد. ترانزیستورهای قدرت خروجی را باید بر روی گرماگیر مناسب نصب شود.
4-1: کاربرد دیگر SMPS ها به عنوان اینورتر یا UPS
کار اصلی اینورترها تبدیل خروجی DC یک باتری دارای شارژ به ولتاژ AC با فرکانس برق شهر می باشد تا بتواند بارهای ضروری را تغذیه نماید. در حالت ایدهآل، شکل موج خروجی یک اینورتر باید سینوسی خالص باشد که رابطه نزدیکی با قیمت آن دارد. قیمت یک اینورتر همچنین به ظرفیت باتری پشتیبان، توان خروجی، درصد تنظیم ولتاژ (رگولاسیون) ، مدارهای محافظ، نشانگرهای زمان تبدیل (سرعت عملکرد) و ... بستگی دارد. داشتن این ویژگی ها، اینورتر را به یک منبع تغذیه غیر قابل وقفه (UPS) تبدیل می کند.
5-1: انواع مختلف منبع تغذیه سوئیچینگ
در یک منبع از نوع سوئیچینگ تغییر سطح ولتاژ خروجی از طریق تغییر در نسبت روشن به خاموش یا اصطلاحا زمان کارکرد ترانزیستور خروجی انجام می گیرد. منابع بر اساس نوع کنترل تغییرات خروجی و چگونگی این عمل به دو نوع کلی قابل تقسیم بندی هستند. دو نوع منبع تغذیه سوئیچینگ عبارتند از:
SMPS با مبدل پیشرو (Forward Convertor)
SMPS با مبدل برگشتی (Flyback Convertor)
با وجود شباهتهای فراوان تفاوتهای متمایز کننده ای هم وجود دارد. نحوه عملکرد و چگونگی قرار گیری عناصر مغناطیسی تعیین کننده نوع مدار است.
عناصر اصلی هر یک از انواع این منابع عبارتند از:
یک منبع سوئیچ جهت تهیه موج PWM
القاگر (در مورد منابع پیشرفته تر القاگر جای خود را به ترانس می دهد).
سوئیچ قدرت
یکسو کننده
خازن ذخیره کننده انرژی در خروجی
شبکه های حس کننده و عمل با زخورد
در نوع برگشتی ، انرژی به طور کامل در میدان مغناطیسی سلف در دوره کلیدزنی ذخیره می شود. این انرژی در مدار ولتاژ خروجی هنگام باز بودن کلید تخلیه می شود. ولتاژ خروجی به دوره قطع و وصل کلید بستگی دارد. در بعضی حالتها، ممکن است ولتاژ خروجی از ولتاژ سوئیچ شده ورودی بیشتر شود.