سنسور دما به نام ترمیستور معروفه که مقاومت متغیر تولید میکنه وغیر خطیه اما مدلهایی از سنسور های حرارتی هم به نامهای LM34 و LM35 وجود دارند که بصورت خطی عمل میکنند و با افزایش دما از 0 تا 100 مقاومت اونها از 29 کیلو اهم تا 8/0 کیلو اهم تغییر میکنه اما خروجی اونها به صورت ولتاژ متغیره تا راحت تر بشه براشون برنامه نوشت. به ازای هر درجه فارنهایت 10 میلی ولت ولتاژ تولید میکنند و بسته به نوعشون تو درجه دماهای مختلفی کار میکنند.
برای اتصال هر ADC (مبدل آنالوگ به دیجیتال که سنسورهای حرارتی هم یه نوع از اونهاست) به PC یه IC به نام
ADC804 لازمه تا بتونه سیگنال آنالوگ سنسور رو به مقادیر دیجیتالی تبدیل کنه و به سیستم بفرسته. این IC به پورت سریال کامپیوتر وصل میشه و کل مدار ساختار تقریبآ ساده ای داره که البته یه تنضیمات اولیه ای هم باید رو ورودیها انجام بشه.
بیوسنسور ها(سنسور های دمایی):
اندازه گیریهای متعددی در ارتباط با انرژی حرارتی سیستم بیولوژیک قابل انجام است.اینها شامل دما،هدایت گرمایی و تشعشع گرمایی هستند.از بین اینها، اندازه گیری دما به طور معمول انجام می شود. دما متغییری فیزیولوژیک است که کیلینیکی اهمیت دارد و یکی از 4 علامت حیاتی اساسی است که در تشخیص کلینیکی بیماران مورد استفاده واقع می شود.
سنسور، مهم ترین جزء یک سیستم اندازه گیری دما است. در واقع یک ابزار دقیق اندازه گیری دما، دمای سنسور را نشان می دهد از این رو، مشکل موجود در اندازه گیریهای پزشکی دما، نگهداشتن سنسور دما دردمای فیزیولوژیکی مورد اندازه گیری است. آسان ترین راه انجام این کار نگهداشتن سنسور دما در تماس مستقیم با ساختاری است که دمایش اندازه گیری می شود. با این حال، این به تنهایی کافی نیست چرا که سنسور دما ممکن است دمای بافت در تماس با خود را تغییر دهد. مثلاً، چنانچه سنسور در ابتدا دمای کمتری نسبت به بافت اندازه گیری شونده داشته باشد زمانی که در تماس مستقیم با آن بافت قرار می گیرد، گرما از بافت به سنسور دما جریان می یابد. اگر انرژی گرمایی هدایت شده به داخل بافت یا انرژی گرمایی تولید شده به روش های متابولیک در بافت، نتوانند جای آن گرما را بگیرند، قرار دادن سنسور دما در تماس مستقیم با بافت آن را سرد می کند و در نتیجه دما غلط قرائت می شود به این دلیل، جرم مٶثر گرمایی سنسور دما همواره باید بسیار کمتر از جرم مٶثر گرمایی بافت مورد اندازه گیری باشد. از این گذشته، مهم است که مقاومت گرمایی بین سنسور واقعی و بافت مورد اندازه گیری حتی الامکان کم باشد.
سنسورهای معمول دما که در ابزارهای دقیق مهندسی پزشکی مورد استفاده اند عبارتند از:
1- ترمیستور 2- سنسورهای دمای مقاومت سیمی فلزی 3- ترموکوپل 4- نیمه هادی اتصالpn5- مواد حساس به دما مانند کریستال های مایع که خواص فیزیکیشان را دما تغییر می دهد. از بین این موارد، ترمیستور معمول ترین سنسور دما در اندازه گیری مهندسی پزشکی است. این سنسور از اکسیدهای فلزی نیمه هادی تشکیل یافته است که به اندازه ها و اشکال فیزیکی متنوعی درآورده می شوند. این اشکال از ترمیستورهای قیطانی خیلی کوچک که کروی هستند و قطرهایی به کوچکی mm1 دارند، گرفته تا دیسک های مسطح بزرگی که دارای قطر چند سانتی متر است، تنوع دارند.الکترودها و سیم های رابط، تماس الکتریکی با ماده ترمیستور را فراهم می نمایند و مقاومت الکتریکی ترمیستور از طریق این تماس ها اندازه گیری می شود. مقاومت الکتریکی مواد نیمه هادی با افزایش دما کاهش می یابد. مواد ترمیستوری را طوری ساخته اند که تغییر در مقاومت در محدوده دمایی موردنظر به حداکثر برسد و در همان حال حد بالایی از پایداری الکتریکی داشته باشند تا از تغییرات مقاومت در اثر دیگر منابع، یا به طور ساده با کهنه شدن خود ماده، جلوگیری شود. رسیدن به چنین خواصی، ساده نیست و از این رو فرمولاسیون واقعی مواد مختلف ترمیستوری که توسط تولیدکنندگان مختلف مورد استفاده قرار می گیرد و همچنین فرایندی که جهت پایدار نمودن خواص الکتریکی آنها استفاده می شود به دقت سرّی نگه داشته می شوند.
دماسنج الکترونیکی کلینیکی مثالی از یک ابزار دقیق اندازه گیری دما مبتنی بر ترمیستور است. سنسور این ابزار دقیق از یک پروب تشکیل شده که یک ترمیستور دارد. طراحی این پروب، عامل مهمی در عملکرد کل ابزار است. جرم پروب و ترمیستور باید کم باشد تا پاسخ زمانی سریعی بدهد، در عین اینکه پروب باید محکم باشد تا قدرت تحمل استفاده مکرر را داشته باشد. بنابراین یک ترکیب مهندسی ضروری است چرا که این دو نیازمندی معمولاً با هم مخالف هستند. از این گذشته، چنانچه ابزار دقیق برای افراد مختلف بکار رود، تمیز کردن و استریلیزه نمودن پروب بعد از هر بار استفاده عملی نیست. پس یک پوشش حفاظتی استریلیزه و یکبار مصرف پروب را می پوشاند که برای استفاده هر بیمار عوض می شود. همچنین این پوشش باید جرم گرمایی کم و هدایت گرمایی بالا داشته باشد تا از خراب شدن پاسخ زمانی ابزار جلوگیری نماید. همچنین باید محکم باشد تا گسیختگی که عملکرد آن را از بین می برد روی پروب قرار گیرد.
هدف مدار الکترونیک پردازش سیگنال در این ابزار دقیق تبدیل مقاومت الکتریکی ترمیستور به ولتاژ مرتبط با دمای آن و آماده سازی این ولتاژ برای وسیله قرائت که معمولاً یک صفحه دیجیتالی نمایش دهنده دما است، می باشد. یک مدار پل و تستون نامتعادل که یک ضلع آن را ترمیستور تشکیل می دهد، این هدف را محقق می کند. چنانچه چنانچه پل به طور مناسب طراحی گردد، غیرخطی بودن ولتاژ خروجی پل و تستون به عنوان تابعی از مقاومت می تواند غیرخطی بودن ترمیستور را در یک محدوده دمایی معین(حداکثر تا 40 درجه سانتی گراد) جبران کند، طوری که ولتاژ خروجی پل رابطه خطی با دما داشته باشد. بقیه مدار الکترونیکی باید این سیگنال را طوری مقیاس دهی کند که خروجی دستگاه عدد صحیح را که با دمای مورد اندازه گیری مطابق است نشان دهد.