چکیده :
به تقریب همه دانش ها به طور کم و بیش از ریاضیات استفاده می کنند . قانون های دانش های پایه ، مکانیک ، نجوم ، فیزیک و تا اندازه زیادی شیمی به طور معمول به وسیله فرمول بیان می شود و نظریه های آنها زمانی پیشرفت می کند که از دستگاه های ریاضی به طور گسترده ای استفاده شود بدون ریاضیات پیشرفت این دانش ها ممکن نیست . علاوه بر این ریاضیات در هنر نقش اساسی دارد .
مقدمه :
سرچشمه زنده بودن ریاضیات در اینجاست که مفهوم ها و نتیجه های آن با همه انتزاعی بودنشان ناشی از واقعیت است و کابرد فراوانی در سایر دانش ها ، در صنعت و همه زمینه های مربوط به زندگی بشری پیدا می کند و این مهمترین مطلب برای درک ریاضیات است . با این وجود کم نیستند کسانی که ریاضیات را دانشی دشوار و دست نیافتنی و در ضمن خشک و خشن می پندارند و به همین مناسبت ، با یک ریاضی دان و معلم ریاضی با احتیاط برخورد می کنند . چرا که باید آدمی عبوس و بی احساس و بی ذوق باشد که دور از زندگی و جامعه و بی توجه به نیازهای مادی و معنوی روزگار خود در کنجی مینشیند و با نمادها و رابطه ها و شکل های ساخته خود ، هراسی شناخته در دل دیگران به وجود می آورد . بی تردید سخت گیری های بی جا یا به جای برخی از معلمان ریاضی و بیمضمونی و گاهی زشتی کتابهای درسی ریاضیات ، در این باره نقش جدی داشته باشد ولی دلیل اصلی این داوری های نادرست را باید در جای دیگر جستجو کرد .
بحثی در مورد زیبایی ریاضیات :
زیبایی ریاضیات فرعی بر آن نیست ، بلکه یک خصوصیت اصلی ریاضیات است می توانیم ملاکهایی بدست دهیم که اکثریت غریب به اتفاق ریاضی دانان برای تشخیص زیبا و زشت از یکدیگر به کار می برند . مهم ترین اینها عبارتند از : غیرمنتظره بودن (نظیر وجود تابعی از R به R که همه جا پیوسته است ولی هیچ جا مشتق پذیر نیست) قدرت ایجاد ارتباط بین شاخه های ریاضیات و توانایی نمایش مشابهت ها در ریاضیات (مانند گروه گالوای یک میدان) سادگی برهان (نظیر اینکه مجموعه اعداد اول نا متناهی است) اختصار در بیان ، کاربرد پذیری در علوم و مهندسی مانند (وجود یکتایی جواب معادلات دیفرانسیل با شرایط اولیه) عمق و کلیت به این معنا که مطلب مورد نظر تکیه گاه ساختارهای ریاضی مختلف و ایجاد کننده سؤالات جدید باشد یا در اثبات قضایای دیگر به کار رود و یا نمونه بارز دسته ای از قضایای شبیه به هم باشد . (2 ، صفحه 75)
یک سؤال اساسی این است که چگونه ریاضی دانان توانستهاند علمی زیبا را که عمیق ترین معرفت بشری شمرده می شود بیافرینند ؟
در پاسخ باید گفت سختگیری ، بدون بخشش کوچکترین خطاها ، در کنار روش و معیارهای منطقی آنها ، به همراه جدیت، خلاقیت ، به غایت اندیشیدن ، و نیز بلند پروازی و جسارت شکستن هر چه موجود است صرف نظر از تقدس مطلب یا ارجمندی صاحبان افکار ، عامل موفقیت ریاضی دانان در پرداختن به ریاضیات به عنوان علمی دقیق ، منسجم ، منظم ، قطعی و دارای بیانی صادق و هیجان انگیز بوده است . (1، صفحه 44)
ریاضیات انعکاس دنیای واقعی در ذهن ماست و ارائه مدلهای مختلف ریاضی برای پدیده های گوناگون روشی برای ارائه تصویری از طبیعت است . (3 ، فصل هشتم)
ریاضیات در دوران باستان در بستگی با نیازهای طبیعی زندگی پدید آمد و بتدریج به دستگاهی از دانش های گوناگون تبدیل شد . ریاضیات نیز همچون سایر دانش ها بازتابی از قانونهای طبیعت است و به عنوان صلاح نیرومندی برای شناخت طبیعت و پیروزی بر آن به کار می رود ولی از آنجا که ریاضیات بیش از اندازه انتزاعی و ذهنی است رشته های جدید آن برای کسانی که ویژه کار نیستند تا اندازه زیادی قابل دسترس نیست . همین ویژگی انتزاعی بودن ریاضیات ، از روزگاران باستان پندارهای ذهن گرایانه درباره بی ارتباطی آن با طبیعت به وجود آورد .
$ ریاضیات و هنر :
امروزه بسیاری از هنرمندان برای ارائه دیدگاه هایی درباره نقش هنر ، عناصر و رابطه های ریاضی را مورد کاوش قرار داده اند . قانون های مناظر و مرایا که دشواری تجسم فضایی را در نقاشی به وجود می آورد ، به وسیله هنرمندان و ریاضی دانان در یک زمان حل شد .
دانش و هنر هر دو زاییده خلاقیت فکری و عملی انسان در طول زمان و در بستگی با نیازهای روحی و جسمی اوست . دانشمند و هنرمند هر دو انسانند و آفریده های آنها هم جز برای انسان و به خاطر انسان نیست . موسیقی و ریاضیات ، هر دو بازتابی از ذهن سنجیده و نظم پذیر آدمی است و باید سرانجام به هم بپیوندند و دانش واحدی را تشکیل دهند . (4، صفحه 83)
انسان در همان حال که با الهام از نغمه های طبیعی ، به موسیقی روی می آورد و به آن خوی می گیرد ، در مسیر شناخت قانون های حاکم بر موسیقی گام بر می دارد و ساختمان موسیقی را به صورت دانشی در می آورد که مانند هر دانش دیگری بر اصل ها و قانون مندی های منطقی (به ویژه ریاضیات) استوار است .
بستگی موسیقی به فیزیک و ریاضیات از دیر باز شناخته شده است . تجزیه موسیقی ، از نقطه نظر نغمه ها ، هماهنگیها، وزن ها ، شکل ها و سرانجام سازمانی که در آن وجود دارد همیشه یکی از جدی ترین مساله ها در بررسی دانش موسیقی بوده است . برای رسیدن به این هدف می توان از شاخه های مختلف ریاضیات ، مثل آمار ، نظریه انفورماسیون و نظریه گروهها استفاده کرد .
سؤال این است که چرا ریاضیات و هنر تا این اندازه به هم نزدیک اند ؟
اول به این دلیل که طبیعت ، سرچشمه زاینده و بی پایانی است برای انگیزه دادن به هنرمند و ریاضی دان البته دانش های تجربی هم ، از همین سرچشمه استفاده می کنند ولی آنها تنها رو به بیرون دارند و پدیده ها و روندهای طبیعی را همان گونه که وجود دارد بررسی می کنند و قانون مندی های حاکم بر آن را کشف می کنند ، بدون آنکه در اندیشه تغییر آن باشند در حالی که هنرمند و ریاضی دان از درون خود و از ایده ها سود می جویند و حقیقت را نه تنها آن گونه که مشاهده می شود و به تجربه در می آید ، بلکه آن طور که باید باشد و در تخیل و آرزوی آدمی است ، می بینند . هنرمند و ریاضی دان با مراجعه به احساس و تجربه درونی خود با دستگیره (معرفت شهودی)
می خواهند به یاری جابه جایی ها و تبدیل ترکیب ها، (حقیقت موجود) را چه در عرصه طبیعت و چه در عرصه اجتماع و زندگی انسانی به صورت (حقیقت ایده آل) در آورند و به همین جهت بازتاب دهنده انسانیترین جنبه های زندگی بشر هستند .