- سخن آغازین
«تلویزیون دیجیتال» عبارتی ست که در چند سال اخیر در مجامع کارشناسی جهانی و سمینار های تخصصی در حوزه های مخابرات و پخش تلویزیونی در سطحی گسترده مطرح شده است، اما این عبارت واقعا چیست و اشاره به کدام فن آوری دارد؟ این تلویزیون چه تفاوت مهمی با تلویزیون موجود فعلی (آنالوگ) دارد؟ چه نیازی برای حرکت به سمت آن احساس می شود؟ آیا واقعاً برای ما یک مفهوم بدیع و ناشناخته است؟ راستی، آیا تا کنون تصاویر دریافتی از گیرنده های ماهواره ای دیجیتال را بر صفحه ی تلویزیون های خانگی دیده اید؟ میزان شفافیت، وضوح، خالی از نویز و برفک بودن این تصاویر چه قدر رضایت بخش است؟ به راستی رمز رسیدن به این درجه از کیفیت تصویری چیست؟ این ها سؤالاتی هستند که امیدواریم در صفحات بعدی به آن ها پاسخ مناسبی داده شود.
شصت سال پس از تولد و معرفی تلویزیون آنالوگ (در ابتدا سیاه و سفید) و سی سال پس از تولد و ظهور رنگ در تصاویر تلویزیونی، «تلویزیون» در آستانه ی یک مهاجرت و حرکت بنیادی قرار گرفت : گذار و انتقال از تلویزیون آنالوگ به تلویزیون دیجیتال.
اما چرا دیجیتال را انتخاب کرده ایم؟ شاید این سیر تکاملی و جایگزین شدن تلویزیون دیجیتال به جای آنالوگ، یادآور تکراری باشد که در برخی از رویدادهای تاریخ رخ می دهد! هنگامی که یونانیان باستان به رهبری اسکندر بر مصر مسلط شدند، به تدریج زبان و الفبای یونانی جایگزین زبان مصر باستان گشت و از سویی زبان هیروگیلف ناپدید شد. تنها پس از کشفیات و حفاری های باستان شناسی دو هزار سال بعد (در سال 1799) این خط باستانی مجدداً آشکار شد. یک پاسخ احتمالی برای علت ناپدید شدن آن شاید این باشد : در حالی که در خط و نگارش مصر باستان از هفتصد نشانه ی نمادین متفاوت برای بیان مفاهیم استفاده می شد، نگارش یونانی بر مبنای الف با شکل گرفته بود. به عبارتی، استفاده از تعدادی نماد محدود و معین که وظیفه ی بیان تمام مفاهیم زبانی را بر عهده دارند.
سیستم آنالوگ درواقع نوعی هیروگلیف الکترونیکی است! برای مثال، یک شکل موج جریان الکتریکی متناظر با یک موج صوتی ست و با تغییر فشار صوتی، شکل موج نیز کاملا دگرگون خواهد شد. در مقابل، سیستم دیجیتال از امتیاز استفاده از کدهای سمبولیک دقیق (نظیر حروف الفبا) برای نمایش هر کدام از شکل موج های متغیر تصویر و صدای آنالوگ (نظیر شکل های هیروگلیف) بهره می برد. طبیعتاً هنگامی که ارسال اطلاعات از فرستنده یا کدکننده، با تعداد سمبل های محدود و معین انجام شود، در صورت بروز خطا در سیگنال، گیرنده یا کدگشا باز هم می تواند به کار خود ادامه دهد، به ویژه چنانچه از ابتدا کدهای ویژه ای به همراه سیگنال اصلی ارسل گردند، گیرنده می تواند خطا را کشف و حتی تصحیح کند. برای مثال، در یک گیرنده ی تلویزیون آنالوگ، چنانچه به دلیل جرقه های موتور یک اتومبیل یک جریان پالسی مزاحم در سیگنال دریافتی از آنتن تداخل کند، چون گیرنده ی آنالوگ قادر به شناخت و جداسازی این قبیل سیگنال های ناخواسته از سیگنال دریافتی نیست، پالس های تداخلی به صورت نقاط پراکنده ی سیاه و سفید بر صفحه ی لامپ تصویر ظاهر می شوند. در حالی که در پردازش دیجیتال، امکان شناخت سیگنال های ناخواسته و حذف خطای مزاحم وجود دارد و به همین دلیل تصاویر دریافتی شفاف تر و خالی از نویز هستند.
در شرایطی که جهان وارد قرن بیست و یکم شده، تلویزیون دیجیتال یکی از اجزاء مهم بزرگ راه های اطلاعاتی برشمرده می شود. زیرا این فن آوری، قابلیت ارسال مقادیر فراوانی از اطلاعات را به بیشترین تعداد کاربر با هزینه ی کم داراست. تلویزیون دیجیتال، با تبدیل تصاویر و صدا به مقادیر و کدهای دودویی (0و1) چنین قابلیتی را یافته است.
اینک برنامه های تلویزیونی (شامل تصاویر و صدا) که در حالت اولیه ی خود به قالب آنالوگ هستند، دیجیتال شده و پس از ترکیب با اطلاعات و داده های دیگر از طریق شبکه های مخابراتی به ایستگاه های فرستنده ی پخش امواج ارسال می شوند. این برنامه ها هم چنین قابلیت ذخیره شدن ابتدایی بر دیسک سخت کامپیوتر و سپس ارسال را برای بیننده های خاص (دارای حق اشتراک) دارند. امکان فراهم آوری مجموعه ی چند رسانه ای (صدا، تصویر، داده) به عنوان منبع برنامه ی تولید شده، با قابلیت ذخیره سازی حتی در رایانه های خانگی، سبب انقلابی در مقایسه با زنجیره ی مراحل تولید و پخش تلویزیون آنالوگ شده است.
مرور بر مفاهیم پایه : بررسی ساختار یک سیستم مخابرات دیجیتال
از آنجا که تلویزیون دیجیتال، نوعی از سیستم مخابرات دیجیتال است، طبیعتاً از الگوی کلی چنین سیستمی، تبعیت می کند. بنابراین ضروری ست قبل از ادامه ی بحث، در ابتدا تعاریف اولیه را به طور خلاصه مرور کنیم.
؟؟؟؟؟؟؟؟؟؟؟؟؟؟جای شکل
تصویر 1-1 اجزاء اصلی یک سیستم ارتباطی دیجیتال را شامل طبقات فرستنده، گیرنده و هم چنین کانال ارتباطی معرفی می کند.
طبق تصویر، ابتدا منبع اولیه ی اطلاعات که در حالت طبیعی پیوسته است توسط تراگردان ورودی به سیگنال الکتریکی آنالوگ تبدیل می شود، مانند سیگنال ویدیوئی دوربین تلویزیونی یا سیگنال صدای تولید شده توسط میکروفن.
لازم است تا این سیگنال الکتریکی آنالوگ توسط یک مدار A/D از حالت آنالوگ به دیجیتال تبدیل شود، یعنی رشته ای از ارقام دودویی صفر و یک. هم چنین ممکن است که منبع اطلاعات، نظیر داده های مربوط به یک فایل درون حافظه ی رایانه، از ابتدا ذاتا دیجیتال باشد. در هر صورت، به دنبال شکلی از ارائه ی سیگنال دودویی هستیم تا سیگنال با حداکثر بازدهی، بدون زواید و با حداقل تعداد بیت در دسترس قرار گیرد. این همان تعبیر کدگذاری منبع اطلاعات است که طی این فرآیند افزونگی های ذاتی و آماری در سیگنال اولیه حذف می شود. به تعبیر دیگر، این عمل فشرده سازی داده ها نامیده می شود و پردازشی ویژه برای استفاده ی بهینه از پهنای باند فرکانسی کانال ارتباطی ست. طبیعی ست که هر چه حجم داده های تولیدی کم تر باشد، ارسال آن ها با سرعت انتقال کم تر و با اشغال پهنای باند کم تر امکان پذیر است.
سپس سیگنال کد شده در طبقه ی کد گذار یا کد کننده ی منبع وارد طبقه ی کدگذار کانال ارتباطی می شود. این کدکننده برخلاف قبل، به شیوه ای کاملا کنترل شده، داده های جدیدی را به داده های اطلاعات اصلی می افزاید تا به کمک آن ها گیرنده بتواند خطاها و آثار مخرب ناشی از نویز و تداخل های محیطی در سیگنال دریافتی را آشکار و تصحیح کند. بنابراین، کدکننده ی کانال برخلاف کدکننده ی منبع وظیفه ی افزایش افزونگی ها را جهت کنترل و کاهش خطا بر عهده دارد. معمولا به دو روش می توان کنترل خطا را انجام داد : نخست با ارسال دوباره ی پیغام اولیه یا روش ARQ که در این حالت باید حتما یک خط ارتباطی برگشت میان فرستنده و گیرنده موجود باشد تا گیرنده بتواند از فرستنده ارسال دوباره را درخواست کند. در این حالت گیرنده فقط قدرت تشخیص و آشکارسازی خطا را دارد و در عوض فاقد توانایی تصحیح خطاست.
در حالت دوم که هیچ گونه مسیر برگشتی وجود ندارد، تنها امکان کنترل خطا به روش «تصحیح خطای پیش سو» (Forward Error Correction) یا به اختصار FEC است که خود شامل شیوه های گوناگونی ست. در یک روش ساده، اگر تعداد بیت پیغام برابر عدد k باشد، به آن ها تعدادr بیت به عنوان بیتهای وارسی افزوده شده و در کل یک کد – واژه با n بیت ساخته و مجموعه ای n بیتی به مدولاتور ارسال می شود. مدولاتوری دیجیتال در واقع بخش واسطه برای انتقال جریان داده ها به محیط انتشار است. از آنجا که تقریباً تمام محیط های ارتباطی در عمل قابلیت انتقال سیگنال های الکتریکی را فقط به صورت شکل موج های پیوسته دارند، در طبقه ی مدولاتور سیگنال گسسته ی زمانی عملا دوباره به سیگنال پیوسته یا آنالوگ تبدیل می شود تا شرایط مناسب انتشار یابد. درواقع اولین هدف مدولاتور نگاشت یک واحد اطلاعات دودویی به یک شکل موج الکتریکی پیوسته است.
کانال مخابراتی یک محیط یا رسانه ی فیزیکی برای انتقال سیگنال بین فرستنده و گیرنده است. این محیط می تواند محیط بسته (نظیر کابل الکتریکی یا فیبر نوری) یا محیط انتقال باز (نظیر جو و فضای آزاد) باشد. ویژگی معمول کانال ارتباطی این است که سیگنال در ضمن انتقال از طریق آن، تحت تأثیر عوامل فیزیکی از قبیل نویز و تداخل قرار می گیرد و مقداری دچار آسیب می شود.
در سمت دیگر کانال، طبقات گیرنده قرار گرفته که ابتدا توسط یک دِمدولاتور دیجیتالی سیگنال دریافتی از حالت پیوسته به گسسته تبدیل شده و شکل موج آسیب دیده ی سیگنال باز به دنباله ای از داده های دودویی (البته همراه با خطا) تبدیل می شود. سپس همان گونه که اشاره شده، در کدگشای کانال به وسیله ی اطلاعات دریافت شده از فرستنده، همان افزونگی ها، داده ها مجددا بازسازی و ترمیم، و خطاها آشکار گشته و تا حد ممکن تصحیح می شوند. خواهیم دید که میزان متوسط احتمال خطا در بیت که در خروجی کدگشا قابل اندازه گیری ست، پارامتری مهم برای سنجش و معرف میزانی از کیفیت کار مجموعه ی مدولاتور و کدگشا، و به طور کلی گیرنده، است.
در حالت کلی، احتمال خطا تابعی از مشخصه های کد و کدگذاری، نوع شکل موج های ارسال در کانال متناسب با اطلاعات اولیه (نوع مدولاسیون)، قدرت فرستنده و مهم تر از همه ویژگی های کانال (میزان تأثیر نویز و اعوجاج و تداخل) و نیز روش دمدولاسیون و کدگشایی ست.
در آخرین مرحله، کدگشای منبع رشته داده ها را دریافت کرده و با آگاهی از روش کدینگ، داده های اولیه را استخراج و سیگنال پیغام را بازسازی می کند. در شرایط واقعی و غیر ایده آل، به دلیل اعوجاج ناشی از عمل کرد کدکننده های منبع بر سیگنال اولیه در فرستنده و هم چنین خطاهای ناشی از کانال ارتباطی، سیگنال نهایی به دست آمده در خروجی کدگشای منبع در گیرنده، یک سیگنال تقریبی و نزدیک به سیگنال پیغام (و نه دقیقا خود سیگنال) خواهد بود. سرانجام و در صورت لزوم، توسط تراگردان خروجی سیگنال دودویی مجدداً به شکل آنالوگ، یا اصولا حالت غیرالکتریکی، تبدیل می شود.
در ادامه ی بحث و فصل های پیش رو، در زمان لازم درباره ی اجزاء ساختاری یک سیستم مخابرات دیجیتال به صورت دقیق تر و با موشکافی بیشتر گفت و گو خواهیم کرد و هم چنین مصداق های عینی آن را در بحث تلویزیون دیجیتال معرفی و بیان خواهیم کرد.
1-1- معماری اجزاء سیستم تلویزیون دیجیتال
تصویر 1-2 طبقات تشکیل دهنده ی سیستم تلویزیون دیجیتال را از بخش ارسال تا دریافت، به صورت سیمایی کلی و اجمالی، و در عین حال سودمند، نمایش می دهد که بیان گر چگونگی ترتیب فصل های کتاب حاضر در تشریح این سیستم نیز هست.
آشکارست که سیستم تلویزیون دیجیتال مصداقی کاربردی ست از مفهوم کلی سیستم ارتباطی دیجیتال. پس با همان نگاه می توان مختصات و ویژگی های آن را بررسی کرد.
همان گونه که در تصویر پیداست، در اولین طبقه دوربین تصویربرداری ویدئو و میکروفن به عنوان اولین منبع تأمین کننده ی اطلاعات تصویر و صدا به صورت سیگنال الکتریکی آنالوگ و پیوسته، قرار گرفته اند. تا این مرحله همه چیز از اصول تلویزیون آنالوگ پیروی می کند.
؟؟؟؟؟؟؟؟؟؟ جای شکل
در فصل دوم مروری اجمالی بر ماهیت سیگنال صدا و ویدئو و تعاریف آن ها خواهیم داشت.
طبقه ی دوم با تبدیل از حالت آنالوگ به دیجیتال، گذرنامه ی ورود به دنیای دیجیتال ست. در این طبقه هر دو سیگنال صدا و ویدئو از حالت آنالوگ به قالب دیجیتال (یا رشته هایی از صفر و یک) تبدیل می شوند. این تبدیل خود مراحلی دارد که در فصل سوم به تفصیل بیان می شوند.
طبقه ی سوم یکی از بخش های کلیدی در ساختمان تلویزیون دیجیتالی ست که عبارت است از کدکننده های تصویر و صدا. وظیفه ی این طبقه فشرده سازی و کدگذاری اطلاعات تصویر و صدایی که در مرحله ی قبل به صورت ساده دیجیتال شده اند، با الگوریتمی مناسب است. در آینده خواهیم گفت که چرا این کار به منظور کاهش قابل ملاحظه ی پهنای باند فرکانسی ضرورت اساسی دارد. در فصل های چهارم و پنجم به روش های فشرده سازی MPEG می پردازیم.
طبقه ی بعدی از مالتی پلکسر MPEG تشکیل شده که وظیفه ی تلفیق مناسب تمامی اطلاعات قابل ارسال، اعم از صدا و تصویر برنامه های مختلف را به همراه داده ها و دیگر اطلاعات کمکی بر عهده دارد. البته در گیرنده اطلاعات تلفیق شده دوباره جدا می شوند و هر کدام در مسیر درست خود قرار می گیرند. فصل ششم به بحث مفصل در این باره اختصاص دارد.
و اما در بخش مدولاسیون سیگنال تلویزیون دیجیتال و ارسال سیگنال از طریق آنتن یا سایر محیط های انتشار، مانند هر سیستم مخابرات دیجیتال دیگری، موضوعی حائز اهمیت بسیار، حراست و حفاظت از اطلاعات ارسالی برابر هر آسیبی ست که در محیط انتشار ایده آل و عاری از خطایی وجود ندارد، پس ناگزیر هستیم با تمهیداتی سیگنال ارسالی را مقاوم کنیم، طوری که هنگام دریافت در گیرنده، اولا اطلاعات با کم ترین آسیب دریافت شود، ثانیا بتوانیم خطا را کشف و حتی تصحیح کنیم. به همین منظور، طبق تصویر، ابتدا یک نوع کدینگ ویژه به نام خطایاب بر سیگنال اطلاعات تلفیق شده، اعمال می کنیم یا درواقع اطلاعات جدیدی را به آن می افزاییم تا درگیرنده برای بازسازی اطلاعات آسیب دیده از آن ها استفاده کنیم این مسائل نیز در فصل ششم بررسی می شوند.
دیگر نکته ی بسیار مهم، انتخاب نوع مدولاسیون متناسب با محیط انتشار است. طبیعی ست که مدولاسیون انتخابی برای پخش از محیط ایمن کابل نسبت به محیط فضا و ارسال ماهواره ای و محیط پرآسیب و مهارناپذیر مجاور زمین یا به اصطلاح ارسال زمینی کاملا متفاوت است. به موضوع انتقال سیگنال در فصل هفتم می پردازیم.
در نهایت، تمام این تمهیدات برای رساندن سیگنال حاوی تصویر و صدا به بیننده پیده شده است. بنابراین باید چگونگی دریافت مناسب سیگنال تلویزیونی دیجیتال را فراگیریم و به تفاوت واقعی تلویزیون دیجیتال با تلویزیون آنالوگ از دیدگاه بیننده پی ببریم. موضوع عمل کرد دستگاه تبدیل و تطبیق سیگنال دیجیتال به گیرنده ی تلویزیونی آنالوگ را در فصل هشتم بررسی می کنیم.
شناخت تصویر و صدای دیجیتال
1- پیشینه ی سیگنال دیجیتال
قبل از پرداختن به ضرورت های روی آوردن صنعت تلویزیون به مقوله ی پردازش و انتقال ویدئوی دیجیتال در دهه ی 1990، لازم است به برخی نوآوری ها در این صنعت در اواخر دهه ی 1970 و اوائل دهه ی 1980 نگاهی بیندازیم.
اولین نکته ی مهم این است که سیستم های تلویزیونی PAL , NTSC که در فصل قبل به آنها اشاره کردیم، اساسا به عنوان استانداردهایی برای ارسال و انتقال تعریف شدند نه به عنوان استانداردهایی برای تولید برنامه ی ویدئویی.
همان گونه که ماهیت سیگنال های PAL , NTSC را شناختیم، می دانیم که در این دو نوع سیگنال ویدئویی، مؤلفه های فرکانس بالای مربوط به روشنایی تصویر معرف جزئیات بافت تصویری هستند. از سوی دیگر، همواره این احتمال وجود دارد که این اطلاعات فرکانس بالا، در گیرنده به صورتی نادرست به اطلاعات رنگ تفسیر و تبدیل شوند.
این اثر تداخل رنگ نامیده می شود و نتیجه اش به جزء ثابتی از اشکالات تصاویر دریافتی تلویزیونی تبدیل شده و گویی به صورت همیشگی تصاویر را به اشغال خود درآورده است. چنان که گفته شد، استانداردهای PAL , NTSC متعلق به سیگنال ویدئویی مرکب هستند که در آن تمام اطلاعات روشنایی، رنگ و پالس های هم زمانی در یک سیگنال واحد جمع شده اند و نوع استاندارد، بیان گر چگونگی جمع شدن این مؤلفه ها با یکدیگر است.
گفتیم که نوع دیگری از ارائه ی سیگنال ویدئویی به صورت سیگنال مجزا و منفک است که در آن مؤلفه های روشنایی (Y) و رنگ( شامل مؤلفه های Cb , Cr ) به صورت سه سیگنال الکتریکی مجزا و همزمان تولید می شوند یا در حالت سوم، سیگنال ویدئویی به صورت کاملا تفکیک شده فقط با عناصر رنگی قرمز (R)، سبز (G) و آبی (B) تولید و ارائه می گردد. در هر حال، شاید به دلیل هزینه ی زیاد تجهیزاتی که کار پردازش سیگنال ویدئویی مجزا را در سه سطح بر عهده داشتند (نظیر دستگاه های سوئیچ کننده یا میکسر)، در ابتدا سیگنال ویدئویی به صورت مرکب با استانداردهای PAL , NTSC ، به عنوان مبنا در تولید برنامه ی ویدئویی قرار گرفت. صرف نظر از مقوله ی هزینه، از منظر فنی کار کردن با سه سیگنال به طور همزمان و همسان سازی آنها از نظر دامنه و هم چنین ثابت نگهداشتن تأخیر زمانی ناشی از انتقال سیگنال ها، در زمان های طولانی کاری بسیار مشکل است.
بنابر اغلب سیستم هایی که با ویدئوی مؤلفه ای کار می کنند، به طور خاص از تغییرات تدریجی محتوای رنگی تصاویر گریزی ندارند و تأثیر منفی می گیرند. با این حال، با توسعه و پیشرفت فن آوری آنالوگ در استفاده از مدارهای مجتمع الکترونیکی، صنایع الکترونیک به تولید تجهیزات تلویزیونی متناسب با سیگنال مجزا رو آورد. همراه با پردازش جداگانه ی سیگنال روشنایی (Y) و مؤلفه های رنگی (R-Y) و (B-Y)، طراحان گرافیک محرک نیروی پیشران اصلی برای رسیدن به این دست آوردها شدند، زیرا دریافتند که کار با سیگنال های ویدئویی مرکب منجر به کیفیت ضعیف تصاویر می گردد. دو نیاز اصلی طراحان گرافیک، یکی کار با تصاویر دارای جزئیات متنی زیاد و دیگری استفاده از تصاویر با رنگ های اشباع شده، با سیگنال مرکب براورده نمی شد، زیرا نیاز اول منجر به تداخل رنگی می گشت و تأمین نیاز دوم در عمل امکان پذیر نبود (به خصوص با سیگنال NTSC).
سرانجام استفاده از تجهیزات تلویزیونی آنالوگ، به خاطر باقی ماندن و حل نشدن مشکلات همسان سازی و تأخیر سیگنال ها، دوام چندانی نیافت. در عوض سیستم دیجیتال مشکلات یاد شده را نداشت. دیگر مسائلی نظیر نویز، پاسخ دامنه نسبت به فرکانس و زمان، پارامترهای درونی سیستم دیجیتال بودند که قابلیت الکترونیکی، شروع به تغییر کنند! پس تلویزیون دیجیتال به عنوان بهترین جایگزین برای پردازش ویدئوی آنالوگ مرکب، «سیگنال ویدئوی دیجیتال» را معرفی و پیشنهاد کرد.
به طور کلی مزایا موجود در سیگنال الکتریکی دیجیتال باعث می گردد تا در اولین قدم از طراحی و برپایی هر سیستم پخش همگانی از نوع رادیویی یا تلویزیونی، منابع اطلاعات صوتی و تصویری از وضعیت طبیعی و آنالوگ به حالت دیجیتال یا دودویی تبدیل شوند. برخی از این مزیت ها عبارت اند از :
پایداری و ایمنی بیشتر سیگنال دیجیتال مقابل نویز و عوامل خطا و درنتیجه رسیدن به پاسخ بهتر و نسبت سیگنال به نویز بالاتر در این گونه سیستم ها، قابلیت ذخیره سازی و بافر کردن داده های دیجیتال به صورت بسیار انعطاف پذیر و با حجم بالا، امکان بهره گیری از الگوریتم ها و روش های متنوع و گوناگون در پردازش دقیق سیگنال از جمله فشرده سازی سخت افزاری داده ها و برنامه های نرم افزاری، و بالا بردن ضریب امنیت دسترسی به داده ها از طریق روش های رمزگذاری.
2-مروری بر مفاهیم اولیه
2-1- آشنایی با PCM
معمولا عملیات تبدیل سیگنال های الکتریکی از حالت آنالوگ به دیجیتال به روش PCM انجام می شود. روش PCM توسط لابراتور شرکت AT&T در سال 1937 توسعه یافت و به اجرا درآمد، اما عملا استفاده از این فن تا اواسط دهه ی 1960 که الکترونیک حالت جامد با استفاده از نیمه رساناها گسترش یافت، فراگیر نبود.
از آن به بعد، یکی از روش های مؤثر و مفید در تبدیل و انتقال سیگنال، استفاده از PCM بوده است.
تصویر 3-1 عمل کرد PCM را به سادگی نشان می دهد.
؟؟؟؟؟؟؟جا ی شکل
در ورودی سیستم های مخابراتی معمولا از فیلتر میان گذر (BPF) استفاده می شود، در حالی که در سیستم های ارسال سیگنال ویدئو به دلیل وجود مؤلفه های فرکانسی DC و فرکانس های پایین در اطلاعات تصویر، فیلت پایین گذر (LPF) در مسیر عبور سیگنال به کار برده می شود. پس از فیلتر شدن سیگنال، مدار نمونه بردار و نگهدارنده وظیفه ی نمونه برداری و تبدیل سیگنال آنالوگ پیوسته به سیگنال گسسته را بر عهده دارد. سپس طبقه ی مبدل آنالوگ به دیجیتال قرار گرفته که مقادیر حاصل از سیگنال گسسته را به کدهای دودویی موازی تبدیل می کند و در مرحله ی آخر کدهای دودویی از حالت موازی به حالت متوالی تبدیل و بر یک خط انتقال ارسال می شوند. طبیعتاً در مقصد روند معکوس این عملیات برای بازیابی سیگنال پیغام صورت می پذیرد. مدار مجتمعی که وظیفه ی ساختن PCM و آشکارسازی و کدگشایی آن را بر عهده دارد، کُدک (CODEC) نامیده می شود.
سه تفاوت مهم یک سیگنال آنالوگ پیوسته (در حوزه ی زمان) با سیگنال دیجیتالی یا همان سیگنال PCM وجود داد. نخست این که سیگنال دیجیتال سیگنالی ست که در حوزه ی زمان پیوسته نیست و در عوض به صورت تکه تکه یا گسسته است، یعنی در فرآیند دیجیتال شدن در همان قدم اول عملا یک سیگنال آنالوگ نمونه برداری شده و درنتیجه گسسته در زمان داریم (مشابه فیلم سینمایی که از فریم های مجزای پشت سر هم تشکیل شده است). دوم این که سیگنال دیجیتال کوانتیزه است و به عبارتی دامنه ی آن را با مقادیر عددی صحیح تقریب زده اند (از این رو این سیگنال دیجیتال درواقع یک نمایش نمادین ناپیوسته و تقریبی – البته با دقت خوب – از سیگنال آنالوگ اولیه است). سومین تفاوت این است که سیگنال دیجیتال به صورت دودویی کد شده است و مقادیر آن صرفاً با ارقام صفر و یک معرفی می گردند.
به اختصار این که یک مبدل آنالوگ دیجیتال (D/A) مداری ست که وظیفه ی تبدیل یک سیگنال پیوسته ی آنالوگ با مقادیر دامنه ای بسیار متنوع را به سیگنالی نمونه برداری شده، کوانتیزه و تقریبی، و در نهایت فقط با دو سطح دامنه ای (صفر و یک) بر عهده دارد. عمل کرد معکوس این مدار مبین یک مبدل دیجیتال به آنالوگ (D/A) است که وظیفه ی بازسازی سیگنال پیغام آنالوگ را عهده دار است.