یونانیان در جبر هندسی خود دو روش اصلی را برای حل برخی معادلات ساده به کار بردند:
1 روش تناسب ها 2 روش اضافه کردن مساحت ها
شواهدی در دست است که هر دوی این روشها از ابداعات فیثاغورسیان بوده است. روش تناسبها ترسیم (ساختن) پاره خط که این روش راه حل های هندسی برای معادلات را فراهم می آورد. روش اضافه کردن مساحتها «قرار دادن متوازی الاضلاع بر کنار خطی است» که ریاضیون دوره اسلامی از آن به اضافه کردن متوازی الاضلاع بر قطعه خط مفروض تعبیر کرده اند.
2 اجسام منتظم
مورد دیگر از پیوند میان رازوری و ریاضیات در نزد فیثاغورسیان، علاقه آنان به شکل های هندسی منتظم است. چند ضلعی شکلی مستوی که به وسیله چند خط مستقیم محدود شده است. چند ضلعی در صورتی منتظم است که همه اضلاع آن به اندازه و زاویه های آن نیز برابر باشند. شکل فضایی منتظم از چند وجه مستوی که همانند یکدیگرند تشکیل می شود هر وجه از شکل فضایی منتظم یک چند ضلعی است و هر چند وجه به یک نقطه ختم میشوند، تعداد چند وجهیهای منتظم منحصر به پنج تا است. چند وجهیهای منتظم از روی تعداد وجوه آنها نامگذاری می شوند مثلاً چهار وجهی با 4 وجه مثلثی، شش وجهی یا مکعب با 6 وجه مربعی ... و بیست وجهی با 20 وجه مثلثی را داریم بررسی ریاضی چند وجهیهای منتظم در مقاله هشتم اصول اقلیدس آغاز شد که به غلط چنین نام یافته اند، زیر سه تا از آنها یعنی چهار وجهی، مکعب، و دوازده وجهی منسوب به فیثاغورسیان است در حالی که هشت وجهی و بیست وجهی به تئایتتوس منسوب می باشد. به هر حال توصیفی از هر پنج چند وجهی منتظم به وسیله افلاطون داده شده است، وی در کتاب تیایوس خود نشان می دهد که چگونه می توان مدلهایی از اجسام صلب را با ترکیب مثلثها، مربعها و پنج ضلعیهایی که وجوه آنها را تشکیل می دهند، ساخت تیمایوس افلاطون وی را در موقع دیدار از ایتالیا ملاقات کرد. در این اثر افلاطون، تیمایوس چهار جسم صلبی را که به آسانی قابل ساختن است «چهار وجهی، هشت وجهی، بیست وجهی و مکعب» به صورت رمز گونه ای با چهار عنصر اولیه امپدوکلسی کلیه اجسام مادی آتش، آب ، باد، خاک مربوط می سازد. اشکال مربوط به توجیه جسم صلب پنجم، دوازده وجهی با انتساب آن به جهان پیرامون حل می شود یوهان کپلر توضیح استادانه ای برای انتسابهای تیمایوس ارائه کرد. وی به طور شهودی پذیرفت که بین اجسام صلب منتظم چهار وجهی کوچکترین حجم را نسبت به سطح خود محصور می کند در حالی که بیست وجهی بیشترین حجم را در بر می گیرد. و چون آتش خشکترین این چهار عنصر و آب مرطوبترین آنهاست، چهار وجهی باید مظهر آتش و بیست وجهی مظهر آب باشد. مکعب با خاک مربوط است زیرا مکعب که استوار بر یکی از وجوه مربع شکل خود تکیه می کند، بیشترین پایداری را دارد. از سوی دیگر هشت وجهی وقتی که دو راس متقابل آن به آرامی بین دو انگشت سبابه و شست نگهداشته شود، به آسانی می چرخد و ناپایداری باد را دارد بالاخره دوازده وجهی با جهان مربوط می شود زیرا دوازده وجهی دارای 12 وجه است و منطقه البروج نیز 12 علامت دارد.
3 تفکر اصل موضوعی
در زمانی بین تالس در 600 ق.م و اقلیدس در 300 ق.م مفهوم یک بحث منطقی به صورت سلسله استنتاج هایی دقیق از چند فرض آغازین و صریحاً بیان شده کمال یافت. که به صورت هسته اصلی ریاضیات جدید درآمده و بدون تردید قسمت عمده رشد هندسه با این الگو مدیون فیثاغورسیان است.
4 مسائل علمی تالس
ظاهراً تالس بخش اول زندگی خود را به عنوان بازرگان گذرانده و بخش دوم زندگی خود را وقف مطالعه و مسافرت نمود گفته شده است که مدتی در مصر اقامت کرد و در آنجا با محاسبه ارتفاع یکی از هرم ها به وسیله سایه ها تحسین همگان را برانگیخت. در مورد چگونگی اندازه گیری ارتفاع هرم به دو گونه روایت شده است شرح قدیمیتر که به وسیله هیرونوموس یکی از شاگردان ارسطو داده شده می گوید که تالس طول سایه هرم را در لحظه ای که سایه وی به درازای خود او بود یادداشت کرد. روایت جدیدتر که به وسیله پلوتارک داده شده حاکی از آن است که وی چوبی را بر زمین نصب کرد و سپس از مثلثهای متشابه استفاده نمود. هیچ یک از دو روایت ذکری از مشکل به دست آوردن طول سایه هرم یعنی فاصله از راس سایه تا مرکز قاعده هرم به میان نمی آوردند. گفته شده است که تالس فاصله یک کشتی را از ساحل با استفاده از این واقعیت اندازه گرفت که هرگاه دو زاویه و ضلع بین آنها از مثلثی با دو زاویه و ضلع بین آنها از مثلث دیگر برابر باشد.