تحقیق مقاله کاربرد آمار در ریاضی

تعداد صفحات: 7 فرمت فایل: word کد فایل: 24687
سال: مشخص نشده مقطع: مشخص نشده دسته بندی: آمار
قیمت قدیم:۷,۰۰۰ تومان
قیمت: ۴,۸۰۰ تومان
دانلود فایل
  • خلاصه
  • فهرست و منابع
  • خلاصه تحقیق مقاله کاربرد آمار در ریاضی

    آمار

    آمار را باید علم و عمل استخراج، بسط، و توسعهء دانشهای تجربی انسانی با استفاده از روش‌های گردآوری، تنظیم، پرورش، و تحلیل داده‌های تجربی (حاصل از اندازه گیری و آزمایش) دانست. زمینه‌های محاسباتی و رایانه‌ای جدیدتری همچون یادگیری ماشینی (Machine learning)، و کاوش‌های ماشینی در داده‌ها، (Data mining) در واقع، امتداد و گسترش دانش گسترده و کهن آمار است به عهد محاسبات نو و دوران اعمال شیوه‌های ماشینی در همه‌جا.

    در صورتی که شاخه‌ای علمی مد نظر نباشد، معنای آن، داده‌هایی به‌شکل ارقام و اعداد واقعی یا تقریبی است که با استفاده از علم آمار می‌توان با آن‌ها رفتار کرد و عملیات ذکر شده در بالا را بر آن‌ها انجام داد. بیشتر مردم با کلمه آمار به مفهومی که برای ثبت و نمایش اطلاعات عددی به کار میرود اشنا هستند . ولی این مفهوم منطبق با موضوع اصلی مورد بحث آمار نیست. آمار عمدتاً با وضعیتهابیی سر و کار دارد که در آنها وقوع یک پیشامد به طور حتمی قابل پیش بینی نیست. اسنتاجهای آماری غالباً غیر حتمی اند،زیرا مبتنی بر اطلاعات ناکاملی هستند. در طول چندین دهه آمار فقط با بیان اطلاعات و مقادیر عددی در باره اقتصاد،جمعیت شناسی و اوضاع سیاسی حاکم در یک کشور سر و کار داشت .حتی امروز بسیاری از نشریات و گزارشهای دولتی که توده ای از آمارو ارقم را در بردارند معنی اولیه کلمه آمار را در ذهن زنده می کنند .اکثر افراد معمولی هنوز این تصویر غلط را در باره آمار دارند که آن را منحصر به ستونهای عددی سرگیجه آور و گاهی یک سری شکلهای مبهوت کننده می دانند .بنابر این یادآوری این نکته ضروری است که نظریه و روشهای جدید آماری از حد ساختن جدولهای اعداد و نمودارها بسیار فراتر رفته اند. آمار به عنوان یک موضوع علمی،امروزه شامل مفاهیم و روشهایی است که در تمام پژوهشهایی که مستلزم جمع آوری داده ها به وسیله یک فرایند آزمایش و مشاهده و انجام استنباط و نتیجه گیری به وسیله تجزیه و تحلیل این داده ها هستند اهمیت بسیار دارند.

    علم آمار و ارتباط به ریاضی

    علم آمار، خود مبتنی است بر نظریه آمار که شاخه‌ای از ریاضیات کاربردی به حساب می‌آید. در نظریهٔ آمار، اتفاقات تصادفی و عدم قطعیت توسط نظریهء احتمالات مدل‌سازی می‌شوند. در این علم، مطالعه و قضاوت معقول در بارهٔ موضوع‌های گوناگون، بر مبنای یک جمع انجام می‌شود و قضاوت در مورد یک فرد خاص، اصلاً مطرح نیست.

    از جملهٔ مهم‌ترین اهداف آمار، می‌توان تولید «بهترین» اطّلاعات از داده‌های موجود و سپس استخراج دانش از آن اطّلاعات را ذکر کرد. به همین سبب است که برخی از منابع، آمار را شاخه‌ای از نظریه تصمیم‌ها (Decision theory) به شمار می‌آورند.

    این علم به بخش‌های آمار توصیفی و آمار استنباطی تقسیم می‌شود.

    عمل آماری در ریاضی

    شامل برنامه‌ریزی و جمع‌بندی و تفسیر مشاهدات غیر قطعی است به‌شکلی که[1] :

    اعداد نمایندهٔ واقعی مشاهدات بوده، غیر واقعی یا غلط نباشند.

    به‌نحو مفیدی تهیه و تنظیم شوند.

    به‌نحو صحیح تحلیل شوند.

    قابل نتیجه‌گیری صحیح باشند.

    احتمالات ریاضی در آمار

    در زبان محاوره، احتمال یکی از چندین واژه ای است که برای دانسته یا پیشامدهای غیر مطمئن به کار می‌رود و کم و بیش با واژه‌هایی مانند ریسک، خطرناک، نامطمئن، مشکوک و بسته به متن قابل معاوضه است. شانس، بخت، امتیاز و شرط بندی از لغات دیگری است که نشان دهنده برداشت‌های مشابهی است. همانگونه که نظریه مکانیک به تعاریف دقیق ریاضی از عبارات متداولی مثل کار و نیرو می‌پردازد، نظریه احتمالات نیز تلاش دارد تا مفاهیم و برداشت‌های مربوط به احتمالات را کمّی سازی کند.

    ریاضی و امار

    واژگانی که درک مفهوم آن‌ها در علم آمار مهم است عبارت‌اند از[2] :

    جمعیت

    نمونه

    متغیّر

    مقیاس‌های اندازه‌گیری :

    مقیاس اسمی

    مقیاس ترتیبی

    مقیاس فاصله‌ای

    مقیاس نسبتی

    کاربرد آمار در ریاضی

    آمار رشته وسیعی از ریاضی است که راههای جمع آوری، خلاصه سازی و نتیجه گیری از داده‌ها را مطالعه می‌کند. این علم برای طیف وسیعی از علوم دانشگاهی از فیزیک و علوم اجتماعی گرفته تا انسان‌شناسی و همچنین تجارت، حکومت داری و صنعت کاربرد دارد.

    هنگامی که داده‌ها جمع آوری شدند چه از طریق یک روش نمونه برداری خاص یا به وسیله ثبت پاسخ‌ها در قبال رفتارها در یک مجموعه آزمایشی (طرح آزمایش) یا به وسیله مشاهده مکرر یک فرایند در طی زمان (سری‌های زمانی) خلاصه‌های گرافیکی یا عددی را می‌توان با استفاده از آمار توصیفی به دست آورد.

    الگوهای موجه در داده‌ها سازمان بندی می‌شوند تا نتیجه گیری در مورد جمعیت‌های بزرگ‌تر به دست آید که این کار با استفاده از آمار استنباطی صورت می‌گیرد و تصادفی بودن و عدم قاطعیت در مشاهدات را شناسایی می‌کند. این استنباط‌ها ممکن است به شکل جوابهای بله یا خیر به سؤالات باشد (آزمون فرض)، خصوصیات عددی را برآورد کند(تخمین)، پیش گویی مشاهدات آتی باشد، توصیف ارتباط‌ها باشد (همبستگی) و یا مدل سازی روابط باشد (رگرسیون).

    شبکه توصیف شده در بالا گاهی اوقات به عنوان آمار کاربردی اطلاق می‌شود. در مقابل، آمار ریاضی (یا ساده تر نظریه آماری) زیر رشته‌ای از ریاضی کاربردی است که از نظریه احتمال و آنالیز برای به کارگیری آمار برروی یک پایه نظریه محکم استفاده می‌کند.

    مراحل پایه برای انجام یک تجربه عبارت‌اند از :

    برنامه ریزی تحقیق شامل تعیین منابع اطلاعاتی، انتخاب موضوع تحقیق و ملاحظات اخلاقی برای تحقیق و روش پیشنهادی. طراحی آزمون شامل تمرکز روی مدل سیستم و تقابل متغیرهای مستقل و وابسته. خلاصه سازی از نتایج مشاهدات برای جامعیت بخشیدن به آنها با حذف نتایج (آمار توصیفی). رسیدن به اجماع در مورد آنچه مشاهدات درباره دنیایی که مشاهده می‌کنیم به ما می‌گویند (استنباط آماری). ثبت و ارائه نتایج مطالعه.

     

     

     

     

  • فهرست و منابع تحقیق مقاله کاربرد آمار در ریاضی

    فهرست:

    آمار

    علم آمار و ارتباط به ریاضی

    عمل آماری در ریاضی

    احتمالات ریاضی در آمار

    کاربرد آمار در ریاضی

    منبع:

    ندارد.

تحقیق در مورد تحقیق مقاله کاربرد آمار در ریاضی, مقاله در مورد تحقیق مقاله کاربرد آمار در ریاضی, تحقیق دانشجویی در مورد تحقیق مقاله کاربرد آمار در ریاضی, مقاله دانشجویی در مورد تحقیق مقاله کاربرد آمار در ریاضی, تحقیق درباره تحقیق مقاله کاربرد آمار در ریاضی, مقاله درباره تحقیق مقاله کاربرد آمار در ریاضی, تحقیقات دانش آموزی در مورد تحقیق مقاله کاربرد آمار در ریاضی, مقالات دانش آموزی در مورد تحقیق مقاله کاربرد آمار در ریاضی, موضوع انشا در مورد تحقیق مقاله کاربرد آمار در ریاضی
ثبت سفارش
عنوان محصول
قیمت