کاربرد تقویت کننده توان در مدلسازی
مدلسازی جامع روش نوینی است که انتشار و ترویج امواج و میدانهای الکترومغناطیسی را در سراسر مدار حتی در ساختار قطعه نیمه هادی هم در نظر می گیرد. اما ما این تحلیل را محدود به قسمتهای پسیو مدار می کنیم. در واقع قسمتهای پسیو مدار را با روش موج کامل حل می کنیم و نتایج حاصل از این تحلیل را به کمیتهای مداری تبدیل می کنیم تا کل مدار به روش مداری حل شود. با این تکنیک علاوه بر اینکه به اندازه کافی مناسبی اثرات فرکانس بالای مدار در نظر گرفته می شود اجرای تحلیل ساده تر و سریعتر خواهد شد. مداری که ما برای این کار انتخاب کرده ایم. یک تقویت کننده توان است که جزء اصلی هر فرستنده مایکروویوی است. چون تقویت کننده های توان دارای اثرات غیرخطی هستند لذا روش مداری که برای تحلیل آن باید به کار برده شود. باید غیرخطی باشد با توجه به روشهای موجود بهترین روش برای تحلیل مدارهای فرکانس بالا روش توازن هارمونیکی است که ما هم از این روش استفاده کرده ایم. ابتدا یک تقویت کننده توان طراحی شد. به منظور داشتن حداکثر توان در خروجی و حداکثر خطی بودن این تقویت کننده در کلاس A بایاس شد. برای مدل کردن ترانزیستور مورد استفاده از مدل تجربی Curtice 3 استفاده شده است. تقویت کننده طراحی شده با دو نرم افزار ADS2002 و Microwave Office2002 شبیه سازی شد تا صحت عملکرد آن ثابت شود. چون در ادامه پروژه لازم خواهد شد نتایج حاصل از تحلیل میدانی و مدلسازی عصبی را در برنامه توازن هارمونیکی قرار دهیم لذا داشتن این برنامه ضروری است. بدین خاطر با نرم افزار متلب برنامه ای بر مبنای الگوریتم توازن هارمونیکی نوشته شد همچنین برنامه دیگری هم براساس الگوریتم FDTD نوشته شد تا شبکه های تطبیق تقویت کننده به صورت میدانی حل شوند و پارامترهای پراکندگی آن به دست آیند. این اطلاعات در کد توازن هارمونیکی نوشته شده برای تهیه ماتریس ادمیتانس بخش خطی مدار استفاده می شود تا بدین ترتیب کل مدار تحلیل گردد. از کارهای دیگر انجام شده در این پروژه نشان داد قابلیت شبکه های عصبی در مدل کردن قطعات فعال مایکروویو است. بدین منظور برای ترانزیستور مورد استفاده یک مدل عصبی ایجاد شد که از اطلاعات مدل Curtice3 آموزش یافته است. توانایی این مدل عصبی با به کارگیری آن در برنامه توازن هارمونیکی نوشته شده نشان داده شده است.
دید کلی
عمل تقویت کنندگی سیگنال سادهترین کار در پردازش سیگنال است. چون مبدلها سیگنالهای ضیعفی بدست میدهند که انرژی کمی دارند و دامنه آنها حدود میکروولت یا میلیولت است، بنابراین به تقویت نیاز دارند. چنین سیگنالهای کوچکی برای پردازش مناسب نیستند، چنانچه دامنه آنها بزرگتر شود، عمل پردازش آنها بسیار آسانتر صورت میگیرد. قسمتی که چنین کاری را انجام میدهد، تقویت کننده سیگنال نامیده میشود.
استفاده از تقویت کننده به مثابه تقویت کننده ولتاژ است. تقویت کننده مقدماتی در دستگاه استریوی خانگی نمونهای از تقویت کننده ولتاژ است. نوع دیگری از تقویت کننده موسوم به تقویت توان است. تقویت کننده توان در دستگاههای استریوی خانگی یک نمونه از این تقویت کنندهها است و توان لازم برای راهاندازی بلندگو را تهیه میکند.
مدلهای مداری تقویت کننده
تقویت کنندههای ولتاژ
این مدل که شامل منبع ولتاژ (دارای کنترل) با ضریب بهره Avo است، یک مقاومت ورودی Ri دارد، با توجه به اینکه تقویت کننده یک جریان ورودی از منبع سیگنال دریافت میکند و نیز دارای یک مقاومت خروجی Ro با توجه به تغییر در ولتاژ خروجی است. تقویت کننده جریان خروجی را برای بار تهیه میکند. در مدل تقویت کننده بوسیله منبع ولتاژ سیگنال vs با مقاومت Rs تغذیه شده است و به خروجی با مقاومت بار RL اتصال دارد.
تقویت کنندههای جریان
این مبدل یک منبع جریان دارای کنترل جریان با ضریب بهره جریان Ais ، یک مقاومت ورودی Ri و یک مقاومت خروجی Ro را شامل میشود. تقویت کننده جریان توسط یک منبع جریان is با مقاومت Rs تغذیه میشود و یک مقاومت بار RL به خروجی آن متصل شده است. برای جلوگیری از اتلاف بهره در جفت شدن تقویت کننده جریان با مقاومت بار ، تقویت کننده بایستی طوری طراحی شود که مقاومت خروجیاش Ro خیلی بزرگتر از مقاومت بار RL باشد. یک تقویت کننده جریان آرمانی دارای یک مقاومت خروجی نامحدود است.
تقویت کننده ترارسانایی
این نوع تقویت کننده با ولتاژ ورودی یک سیگنال راهاندازی میشود و یک جریان خروجی بدست میدهد. شاخصه بهره ، Gm ، نسبت جریان خروجی در اتصال کوتاه مدار به ولتاژ ورودی است. این شاخصه ترارسانایی ، اتصال کوتاه مدار نامیده میشود و واحد آن مهو (mho) با A/V است. یک تقویت کننده ترارسانا دارای مقاومت ورودی بینهایت و مقاومت خروجی بینهایت میباشد.
تقویت کننده ترامقاومتی
این نوع تقویت کننده با جریان ورودی سیگنال بکار میافتد و یک ولتاژ خروجی بدست میدهد. شاخصه ، Rm ، نسبت ولتاژ خروجی مدار باز به جریان ورودی است و ترا مقاومت مدار باز نامیده میشود و واحد آن اهم یا V/A است. یک تقویت کننده ترامقاومت دارای مقاومت ورودی صفر و مقاومت خروجی صفر میباشد.
منابع تغذیه تقویت کننده
چون توانی که تقویت کننده به بار میدهد، بیشتر از توانی است که از منبع سیگنال دریافت داشته است، از اینرو ، این پرسش مطرح میشود که سرچشمه توان اضافی کجاست؟ پاسخ آن زمانی دریافت میشود که در نظر بیاوریم که تقویت کنندهها برای کار خود به منابع ولتاژ dc نیاز دارند. منابع ولتاژ dc ، توان اضافی تحویل شده به بار را تامین میکنند. علاوه بر این ، هر توانی که در مدار داخلی تقویت کننده تلف میشود (نظیر توان تبدیل شده به گرما) بوسیله همین منبع ولتاژ dc تامین میشود. بازدهی توان یکی از مهمترین شاخصههای تقویت کنندههایی که توان زیادی بدست میدهند، چنین تقویت کنندههایی ، تقویت کنندههای توان نامیده میشوند.
اشباع تقویت کننده
مشخه انتقال تقویت کننده تنها در محدوده مشخصی از ولتاژهای ورودی و خروجی خطی میماند. در تقویت کنندهای که با دو منبع تغذیه کار میکند، ولتاژ خروجی نمیتواند از مقدار مثبت معینی بیشتر و از مقدار منفی معینی کمتر شود. بطور مسلم برای پیشگیری از بروز اعوجاج در شکل موج سیگنال خروجی ، نوسان سیگنال ورودی بایستی در محدوده خطی کار تقویت کننده قرار داشته باشد.
پاسخ فرکانسی تقویت کنندهها
اگر موج سینوسی (Va(ω به ورودی یک تقویت کننده اعمال گردد، خروجی شکل ، موجی سینوسی با همان فرکانس خواهد بود. البته خروجی سینوسی (Vb(ω دارای دامنه و فازی متفاوت با ورودی (Va(ω است. یک موج سینوسی با فرکانس و دامنه معین به ورودی تقویت کننده اعمال میگردد و دامنه و فازی مرتبط با موج سینوسی ورودی اندازه گیری میشود.
از اینرو ، در این فرکانس مشخص ، بزرگی انتقال یا بهره تقویت کننده ، همچنین زاویه فاز بهره تقویت کننده را پیدا میکنیم. در اینصورت فرکانس موج سینوسی ورودی تغییر داده میشود و آزمون تکرار میگردد. نخست به مورد اول یعنی نمودار بزرگی بهره در برابر فرکانس توجه میکنیم. این مورد را پاسخ دامنه یا پاسخ فرکانسی تقویت کننده مینامیم.
دستهبندی تقویت کنندهها بر اساس پاسخ فرکانس
ظرفیت خازنی داخلی در قطعاتی مثل ترانزیستور سبب افت بهره در فرکانسهای بالا میشود. از سوی دیگر ، افت بهره در فرکانسهای پائین معمولا توسط خازنهای انتقال صورت میگیرد که برای متصل کردن یک طبقه تقویت کننده به طبقه تقویت کننده دیگر از آن استفاده میشود. از این روش برای ساده کردن فرآیند طراحی طبقات مختلف استفاده میشود. خازنهای انتقال را با ظرفیت کاملا بزرگ انتخاب میکنند تا امپدانس آنها در فرکانس مورد نظر کوچک باشد.
کاربردهای زیادی وجود دارد که در آنها مهم است که بهره تقویت کننده در فرکانسهای پائین کم باشد. علاوه بر این ، تکنولوژی ساخت مدارهای مجتمع (IC) ، ساختن خازنهای انتقال بزرگ مجاز نیست. از اینرو ، تقویت کنندههای IC معمولا به عنوان تقویت کنندههای dc یا تقویت کنندههای با اتصال مستقیم طراحی میشوند.
آشنایی با تقویت کننده های عملیاتی (Opamp)
نمونه ای از تقویت کننده های عملیاتی
تقویت کننده های عملیاتی، تقویت کننده های کوپل مستقیم بوده، که دارای گین
(Gian)خیلی زیادی می باشند. که مقدار این گین را با کمک
مقاومت فیدبک می توان کنترل نمود. این تقویت کننده ها اکثراً در مدارات خطی بکار می روند و اغلب در مدارات غیرخطی نیز از آنها استفاده می شود. یک تقویت کننده عملیاتی ایده آل بایستی شرایط زیر را دارا باشد.
1) مقاومت ورودی آن بی نهایت باشد (Ri= ∞).
2) مقاومت خروجی آن صفر باشد (Ro= O).
3) گین ولتاژ حلقه باز آن بی نهایت باشد (Av= -∞).
4) عرض باند آن بی نهایت باشد (BW= ∞).
5) هنگامی که اختلاف ولتاژ در ورودی صفر است، ولتاژ خروجی نیز صفر باشد.
6) منحنی مشخصه آن با درجه حرارت تغییر نکند.
تقویت کننده های عملیاتی اکثراً بصورت مدار مجتمع ساخته می شوند.
اتصالات تغذیه تقویت کننده های عملیاتی
تغذیه دوبل
برای استفاده از رنج کامل تقویت کننده های عملیاتی، بایستی این تقویت کننده ها با دو منبع تغذیه با یاس شوند، که این عمل معمولاً با استفاده از دو منبع تغذیه مجزا صورت می گیرد. ولتاژ منبع اول نسبت به زمین (GND) برابر +VBB بوده در حالیکه ولتاژ منبع دوم نسبت به زمین برابر –VBB می باشد که غالباً مقدار این ولتاژها +15 ولت و -15 ولت انتخاب می شود.
معمولاً تقویت کننده های عملیاتی جهت تغذیه دو پایه دارند، چون زمین به تقویت کننده عملیاتی وصل نمی شود و فقط ولتاژهای +VBB و –VBB به تقویت کننده عملیاتی متصل می شود. ولی با وجود این تمام اتصالاتی که بایستی زمین (GND) شوند، به نقطه بین دو منبع تغذیه زمین وصل می گردند.
همچنین هر تقویت کننده عملیاتی دو ورودی دارد؛ یکی ورودی مثبت که با V+ و دیگری ورودی منفی که با V- نشان داده می شود.
تقویت کننده توان برای کاربرد های UWB
طراحی تقویت کننده توان برای کاربرد های UWB در تکنولوژی CMOS 0.18 میکرون وتقویت کننده توان براساس پارامترهای مشخص شده در استاندارد a3.15.802 با استفاده از تکنولوژی 0.18 میکرون طراحی شده است. با توجه به پهنای باند زیاد مورد نیاز، از ساختار تقویت کننده گسترده برای طراحی تقویت کننده توان استفاده شده است. برای طراحی تقویت کننده گسترده از ساختار سلف و خازن به جای Microstrip استفاده شده ،زیرا طول خط انتقال Microstrip مورد نیاز در مدار مجتمع برای بدست آوردن مقدار سلف لازم برای جدا سازی طبقات خیلی بزرگ می گردد.
با توجه به اینکه در طراحی خطوط انتقال مورد نیاز از خازن های پارازیت ترانزیستورها استفاده شده است و مقادیر این خازن ها از روابط تقریبی بدست آمده اند بنابراین طراحی انجام شده توسط نرم افزار شبیه سازی مدار برای عملکرد مناسب بهینه سازی شده است. تقویت کننده توان طراحی شده دارای ضریب تقویت توان dB 19+ با ریپلdB در باند فرکانسی GHz 10.6-3.1 می باشد.امپدانس ورودی و خروجی تقویت کننده 50 اهم می باشد و ضریب انعکاس در ورودی و خروجی کمتر از dB10- میباشد. توان مصرفی این تقویت کننده توان حدود mW 35 می باشد
جامع و موج کامل تقویت کننده توان موج میلی متری با استفاده از شبکه¬های عصبی
هدف اصلی از انجام این متن تحلیل مدارهای فعال موج میلی¬متری با روشهای نوین است، به گونه¬ای که اثرات فرکانس بالای مدار به مقدار کافی در نظر گرفته شود. مدلسازی جامع روش نوینی است که انتشار و تزویج امواج و میدانهای الکترومغناطیسی را در سراسر مدار حتی در ساختار قطعه نیمه هادی هم، در نظر می¬گیرد. اما ما این تحلیل را محدود به قسمتهای پسیو مدار (که خصلت پراکنده¬کنندگی و تشعشعی بیشتری دارند) می¬کنیم. در واقع قسمتهای پسیو (شبکه¬های تطبیق) مدار را با روش موج کامل (FDTD) حل می¬کنیم و نتایج حاصل از این تحلیل را به کمیتهای مداری تبدیل می¬کنیم تا کل مدار به روش مداری حل شود. با این تکنیک علاوه بر اینکه به اندازه کافی و مناسبی اثرات فرکانس بالای مدار در نظر گرفته می¬شود، اجرای تحلیل ساده¬تر و سریعتر خواهد شد. مداری که ما برای این کار انتخاب کرده¬ایم، یک تقویت کننده توان است که جزء اصلی هر فرستنده مایکروویوی است. چون تقویت کننده¬های توان دارای اثرات غیرخطی هستند لذا روش مداری که برای تحلیل آن باید به کار برده شود، باید غیر خطی باشد. با توجه به روشهای موجود بهترین روش برای تحلیل مدارهای فرکانس بالا روش توازن هارمونیکی است که ما هم از این روش استفاده کرده¬ایم. ابتدا یک تقویت کننده توان طراحی شد، به منظور داشتن حداکثر توان در خروجی و حداکثر خطی بودن این تقویت کننده در کلاس A بایاس شد. برای مدل کردن ترانزیستور مورد استفاده از مدل تجربیCurtice3 استفاده شده است. تقویت کننده طراحی شده با دو نرم افزار ADS2002 و Microwave Office2002 شبیه سازی شد تا صحت عملکرد آن ثابت شود. چون در ادامه پروژه لازم خواهد شد، نتایج حاصل از تحلیل میدانی (FDTD) و مدلسازی عصبی را در برنامه توازن هارمونیکی قرار دهیم لذا داشتن این برنامه ضروری است. بدین خاطر با نرم افزار متلب برنامه¬ای بر مبنای الگوریتم توازن هارمونیکی نوشته شد همچنین برنامه دیگری هم بر اساس الگوریتم FDTD نوشته شد تا شبکه¬های تطبیق تقویت کننده (قسمتهای پسیو مدار) به صورت میدانی حل شوند و پارامترهای پراکندگی آن به دست آیند. این اطلاعات در کد توازن هارمونیکی نوشته شده برای تهیه ماتریس ادمیتانس بخش خطی مدار استفاده می¬شود، تا بدین ترتیب کل مدار تحلیل گردد. از کارهای دیگر انجام شده در این پروژه، نشان دادن قابلیت شبکه¬های عصبی در مدل کردن قطعات فعال مایکروویو است. بدین منظور برای ترانزیستور مورد استفاده یک مدل عصبی ایجاد شد که از اطلاعات مدل Curtice3 آموزش یافته است. توانایی این مدل عصبی، با به کارگیری آن در برنامه توازن هارمونیکی نوشته شده، نشان داده شده است