تحقیق مقاله دایره

تعداد صفحات: 57 فرمت فایل: word کد فایل: 14578
سال: مشخص نشده مقطع: مشخص نشده دسته بندی: ریاضی
قیمت قدیم:۲۹,۰۰۰ تومان
قیمت: ۲۴,۸۰۰ تومان
دانلود فایل
  • خلاصه
  • فهرست و منابع
  • خلاصه تحقیق مقاله دایره

    معادله یک دایره

    فرض کنیم C(a,b) مرکز و r شعاع دایره باشد . فرض کنیم P(x,y) نقطه دلخواهی روی محیط دایره باشد. در این صورت CP=r بنابراین(معادله در فایل اصلی موجود است)

    با مراجعه به معادله ، که عبارتی برای فاصله بین دو نقطه ارائه می دهد، داریم

    که معادله مطلوب است.

    اگر فرض کنیم a=b=0 یعنی مرکز دایره در مبدا باشد، در این صورت معادله به صورت زیر درمی آید.

    معادله (1.19) می تواند چنین نوشته شود.

    بنابراین معادله یک دایره به صورت زیر است

    که در آن g ، f ، c اعداد ثابتی هستند. بالعکس معادله (3.19) را می توان چنین بازنویسی کرد.

    با مقایسه این معادله با (1.19) می بینیم که

    (3.19) دایرهای به مرکز (-g-f) و با شعاع  را نمایش می دهد(4.19)

    در حالت کلی معادله یک دایره چنان است که

    (یکم) ضرایب   و  مساویند  (دوم) جمله xy وجود ندارد.

    مثال 1. معادله دایره ای با مرکز (4.3-) و به شعاع 7 را بیابید.

    معادله عبارتست از

    مثال 2. مرکز و شعاع دایره  را بیابید.

    با قرار دادن معادله مفروض به صورت استانده (19.1) ابتدا لازم است طرفین را بر 4 تقسیم کنیم ، بنابراین

    یعنی .(معادله در فایل اصلی موجود است)

    یا

    بنابراین دایره دارای مرکز ( 0،2/3) و شعاع 1 است .

    مثال 3، معادله دایره ای را بیابید که مرکزش (7-،4) بوده و بر خط

    3x+4y-9=0

    مماس باشد.

    چون خط مماس بر دایره است . بنابراین شعاع دایره برابر با فاصله عمودی مرکز تا خط می باشد . پس

     شعاع

    بنابراین معادله دایره چنین است

    یعنی ،(معادله در فایل اصلی موجود است)

    مثال ، معادله دایره ای را بنویسید که AB قطر آن باشد، در  اینجا ، B,A نقاط  و  می باشند.

    فرض کنیم P(x,y) نقطه دیگری از محیط دایره باشد (شکل 2.19 را ببنید)

    شیبیهای AP و BP به ترتیب عبارتند از

      و(معادله در فایل اصلی موجود است)

    چون AB قطر دایره است ،  ؛ بنابراین AP و PB عمودند؛ پس بنابر (15.18) حاصلضرب شیبهای آنها برابر 1- است . یعنی

    یا

     که شرطی است که بایستی مختصات هر نقطه دلخواه دایره در آن صدق کند و بنابراین معادله مطلوب می باشد.

    2.19 معادله دایره ای که از سه نقطه غیر واقع بر یک استقامت می گذرد.

     

    فرض کنیم که معادله دایره  باشد و سه نقطه
      باشند. چون دایره ازهر سه نقطه می گذرد بایستی مختصات آنها درمعادله دایره صدق کنند. بنابراین

     

     دستگاهی از سه معادلهاست که می توان ان را بر حسب مجهولات g ، f و c حل کرد.

    مثال 1. معادله دایره ای را بیابید که ازنقاط  (6.1)،(3.2)،(2.3) می گذرد.

    فرض کنیم معادله دایره  باشد. در این صورت چون (6.1) روی دایره قرار دارد داریم.

    با حل دستگاه معادلات داریم  . بنابراین معادله مطلوب عبارتست از

     3.19 معادله مماس بر دایره

     درنقطه با دیفرانسیلگیری از معادله نسبت به x داریم

     بنابراین شیب مماس در نقطه  عبارتست از  . پس بنابر

     (6.18) معادله مماس چنین است.

    یا

    یعنی ،

    مقدار   را به هر دو طرف می افزاییم به دست می آید.

    زیرا  روی دایره قرار دارد. بنابراین معادله مطلوب چنین است.

    سهمی ، بیضی ، هذلولی و سهمی نیمه مکعبی  

    مقدمه

    مکان هندسی نقطه P(x,y) که طوری حرکت می کند که نسبت فاصله اش از یک نقطه ثابت S (کانون ) ، و از یک خط ثابت ZQ (هادی) عددی ثابت است (e ، که به عنوان خروج از مرکز شناخته شده است)، مطابق با اینکه e کوچکتر ، مساوی یا بزرگتر از واحد باشد اشکال متفاوتی دارد. این مکان مهمی است وقتی که e=1 ، بیضی است وقتی که e<1 . در بخش های بعدی خواهیم دید که کلیه این مکانها دارای معادلاتی از درجه دوم بر حسب x و y می باشند.

    سهمی (e=1)(معادله در فایل اصلی موجود است)

    فرض کنیم SZ خط ماربر کانون و عمود بر خط هادی ZQ باشد(شکل 1.25 را ببینید).

    بنا بر تعریف مکان هندسی نقطه ، این مکان از نقطه وسط S و Z میگذرد.

    صورت معادله مکان بستگی به  انتخاب محورها دارد. ساده ترین صورت معادله با گرفتن نقطه وسط S و Z به عنوان مبدأ و محورهای مختصات موازی و عمود بر QZ به دست می آید.

    فرض کنیم ، نسبت به این محورها ، SO=OZ=a ، کانون S نقطه (a,0) است و هادی ZQ خط x=-a است. اگر P(x,y) نقطه دلخواهی روی  این مکان باشد.

    PS=PM

    بنابراین

     یعنی(معادله در فایل اصلی موجود است)

     بنابراین

     این ساده ترین صورت معادله سهمی است که با این انتخاب محورها به دست آمد.

    برای رسم این سهمی (فرض کنیم a>0 ) ابتدامشاهده می کنیم که x منفی باشد y تعریف نشده است ، بنابراین منحنی تماماً درطرف راست مبدأ قرار دارد. چون می توانیم معادله سهمی را به صورت  بنویسیم، منحنی نسبت به Ox متقارن است وگاهی از این خط به عنوان محور یاد می شود. اگر x صفر باشد ،  نشان می دهد که محور y ها منحنی را در دو نقطه منطبق بر هم در نقطه (0.0) قطع می کند ، این نقطه راس سهمی نامیده می شود. بنابراین منحنی بر محورy ها در راس مماس است. شکل عمومی در شکل 2.25 نشان داده شده است.

    طول  پاره خط ماربر کانون و موازی خط هادی سهمی را وترکانونی موازی خط هادی نامند. چون طول نقطه L x=a است، با جایگذاری در معادله (25.1) می بینیم که عرض LS دارای طول 2a است. بنابراین

    مثال 1، معادله سهمی با کانون (5.4) و خط هادی x=3 را بیابید.

    با مراجعه به شکل 25.2 فرض کنیم P(X,Y) نقطه دلخواهی از سهمی باشد، در این صورت P از کانون و خط هادی به یک فاصله است. بنابراین

    SP=PM=PN-MN

    یعنی

    و این معادله را میتوان به صورت زیر بازنویسی کرد.

    با مراجعه به شکل (2.25) می بینیم که راس V نقطه (4.4) می باشد. اگر مبدا مختصات را به این نقطه منتقل کنیم معادله به صورت  در می آید که همان معادله (1.25) با a=1 است.

    مثال 2، معادله سهمی را بنویسید که کانونش (2،3-) و خط هادی ان x-y+1=0  باشد.

    فرض کنیمP(X,Y) نقطه دلخواهی از سهمی باشد . دراین صورت P از کانون و خط هادی به یک فاصله است . بنابراین

    ](5.17) و (20.18) راببینید.[

     یعنی(معادله در فایل اصلی موجود است)

    بنابراین معادله مطلوب عبارتست از

    برای تحویل این معادله به ساده ترین صورت ] معادله (1.25) را ببنید[ احتیاج به  تغییر مبدا و دوران محورها داریم. این روش آخری خارج از سطح این کتاب می باشد.

    مثال 3. یک کابل تلفناز دو نقطه P و Q ، به فاصله 60 متر از یکدیگر آویزان فرض کنیم که این کابل به صورت سهمی آویزان باشد، معادله آن را بیابید.

    با درنظر گرفتن محورها به صورتی که درشکل (4.20)  نموده است ، معادله مطلوب به صورت  می باشد.

    نقطه Q دارای مختصات (30.3)است و روی منحنی قرار دارد، بنابراین

    و یا

    a=75(معادله در فایل اصلی موجود است)

    بنابراین معادله مطلوب عبارتست از

     3.20 معادلات مماس وقائم در نقطه  بر سهمی  

    با ردیف انسیلگیری معادله سهمی . نسبت به x داریم

    بنابراین شیب مماس در نقطه  عبارتست از  ومعادله مماس چنین است

    یا(معادله در فایل اصلی موجود است)

    اما ، چون  روی منحنی قرار دارد ،  . بنابراین

    ومعادله مطلوب عبارتست از

    بایستی توجه کرد که این معادله مماس را می توان از معادله اولیه سهمی با جایگذاری  به جای  و  به جای 4ax به دست آورد.این قاعده مشابهی با قاعده ای در همین زمینه درمورد مماس بر یک دایره است.

    قائم بر یک منحنی در یک نقطه خطی است ما بر آن نقطه عمود بر مماس در آن نقطه ، بنابراین چون شیب مماس  است ] (3.20)  را ببینید[ شیب قائم  می باشد.  پس معادله قائم عبارتست از :

     مثال 1. معادلات مماس بر سهمی  در نقاط (3.12) و (48- ،48) را بیابید. نشان دهید که این مماسها با هم زاویه قائمه می سازند و نقطه تقاطشان را بیابید.

    در اینجا 4a=48 ؛ بنابراین a=12 برای مماس در نقطه (3.12) داریم  ،   . بنابراین با جایگذاری این مقادیر در (3.20) داریم

    یا

    (یکم )(معادله در فایل اصلی موجود است)

    y=2x+6

    همین طور برای مماس در نقطه (48- ،48) داریم

    یا(معادله در فایل اصلی موجود است)

    (دوم)

    از (یکم) و (دوم) دیده می شود که شیبهای مماس ها 2 و 2/1- می باشند و حاصلضربشان 1- است. بالنتیجه ، بنابر(15.18) ، مماسها  بر هم عمودند.

    از معادلات (یکم) و (دوم) ، در نقطه تقاطع

    بنابراین x=-12 و y=-18 .

    دقت کنید که چون a=12 دراین حالت x=-12 معادله خط هادی است و این نقطه تقاطع روی خط هادی است.

    4.20 نقاط تقاطع خط y=mx+c و سهمی  

    برای یافتن نقاط تقاطع ، دستگاه معادله را حل می کنیم

    از  و  داریم

    یا(معادله در فایل اصلی موجود است)

    مبین این معادله درجه دوم عبارتست از

    و یا(معادله در فایل اصلی موجود است)

    بنابراین معادله درجه دوم (5.20) دارای دو ریشه حقیقی متمایز، دو ریشه برابر با دو ریشه مختلط هستند. مطابق با اینکه  بزرگتر ، مساوی ، یا کوچکتر ازصفر باشد.

    بالنتیجه اگر ca/m خط منحنی را قطع نمی کند اگر c=a/m خط بر منحنی مماس است. بنابراین بازاء کلیه مقادیر m ، خط

    بر سهمی  مماس است.

    مثال 1. معادله مماس بر سهمی  راکه موازی باخط y+x=5 است بیابید.

    چون مماس موازی خط y+x=5 است ، شیبش با شیب خط برابر است . بنابراین m=-1 . چون  معادله سهمی مفروض است  و بنابراین a=-3 با جایگذاری این مقادیر a و m در معادله (6.20) معادله مطلوب عبارتست از 

    (معادله در فایل اصلی موجود است)

  • فهرست و منابع تحقیق مقاله دایره

    فهرست:

    ندارد.
     

    منبع:

    ندارد.

تحقیق در مورد تحقیق مقاله دایره , مقاله در مورد تحقیق مقاله دایره , تحقیق دانشجویی در مورد تحقیق مقاله دایره , مقاله دانشجویی در مورد تحقیق مقاله دایره , تحقیق درباره تحقیق مقاله دایره , مقاله درباره تحقیق مقاله دایره , تحقیقات دانش آموزی در مورد تحقیق مقاله دایره , مقالات دانش آموزی در مورد تحقیق مقاله دایره , موضوع انشا در مورد تحقیق مقاله دایره
ثبت سفارش
عنوان محصول
قیمت