مقدمه :
عدد پی عدد گنگی است که در اکثر محاسبات ریاضی به نحوی حضور دارد و از مهمترین اعداد کاربردی در ریاضیات میباشد و آن را با π نمایش میدهند. در هندسه اقلیدسی دو بعدی، این عدد را نسبت محیط دایره به قطر دایره و یا مساحت دایره ای به شعاع واحد تعریف میکنند. در ریاضیات مدرن این عدد را در علم آنالیز و با استفاده از توابع مثلثاتی ، به صورت دقیق ریاضی تعریف میکنند.به عنوان نمونه عدد پی رادو برابر کوچکترین مقدار مثبت x ، که به ازای آن cos(x)=0 میشود تعریف میکنند.
عدد پی :
محیط یک دایره π برابر قطرش است.
عدد پی از عددهای ثابت ریاضی و تقریباً برابر با ۳٫۱۴۱۵۹ است.
این عدد را با علامت π نشان میدهند. عدد پی عددی حقیقی و گُنگ است که نسبت محیط دایره به قطر آن را در هندسهٔ اقلیدسی مشخص میکند و کاربردهای فراوانی در ریاضیات ، فیزیک و مهندسی دارد. عدد پی همچنین به ثابت ارشمیدس نیز معروف است.
در قرن نهم هجری دانشمند وریاضی دان ایرانی غیاث الدین جمشید کاشانی عدد پی را تا شانزده رقم اعشار محاسبه کرده بود به نحوی که تا صد و پنجاه سال بعد کسی نتوانست آن را گسترش دهد: 2π=6.2831853071795865
تاریخچه :
بابلیان هنگامی که میخواستند مساحت دایره را حساب کنند ، مربع شعاع آن را در 3 ضرب میکردند. البته لوحهای قدیمی تری از بابلیان وجود دارد که مشخص میکند آنها مقدار تقریبی پی را برابر3.125 میدانستند. در مصر باستان مساحت دایره را با استفاده از فرمول محاسبه میکردند.
( d قطر دایره در نظر گرفته میشد ) که در نتیجه مقدار تقریبی عدد پی 3.1605 بدست میآید.
تقریب اعشاری عدد پی :
اولین نظریه در مورد مقدار تقریبی عدد پی توسط ارشمیدس بیان شد.این نظریه بر پایه تقریب زدن مساحت دایره بوسیله یک شش ضلعی منتظم محیطی و یک شش ضلعی منظم محاطی استوار است.
ریاضیدانان اروپایی در قرن هفدهم به مقدار واقعی عدد پی نزدیکتر شدند.از جمله این دانشمندان جیمز گریگوری بود که برای پیدا کردن مقدار عدد پی از فرمول زیر استفاده کرد:
یکی از مشکلاتی که در این روش وجود دارد این است که برای پیدا کردن مقدار عدد پی تا 6 رقم اعشار باید پنج میلیون جمله از سری فوق را با هم جمع کنیم.
در سال 1761 لامبرت (Lambert) ریاضیدان سوئدی ثابت کرد که عدد پی گنگ می باشد و نمی توان آنرا بصوت نسبت دو عدد صحیح نوشت. همچنین در سال 1882 لایندمن (Lindeman) ثابت کرد که عدد پی یک عدد جبری نیست و نمی تواند ریشه یک معادله جبری باشد که ضرایب آن گویا هستند(همانند عدد e). این کشف بزرگ یعنی اینکه عدد پی یک عدد گنگ می باشد به سالها تلاش ریاضی دانان برای تربیع دایره پایان داد.
در اوایل قرن هجدهم ریاضیدان دیگری به نام جان ماشین فرمول گریگوری را اصلاح کرد که این فرمول امروزه نیز در برنامه های رایانه ای برای محاسبه عدد پی مورد استفاده قرار میگیرد. این فرمول به صورت زیر است:
با استفاده از این فرمول یک انگلیسی به نام ویلیام شانکس مقدار عدد پی را تا 707 رقم اعشار محاسبه کرد،در حالیکه فقط 527رقم آن درست بود.
باوجود آنکه همه ریاضی دانان می دانند که عدد پی گنگ می باشد و هرگز نمی توان آنرا بطور دقیق محاسبه کرد اما ارائه فرمول ها و مدلهای محاسبه عدد پی هموار برای آنها از جذابیت زیادی برخوردار بوده است. بسیاری از آنها تمام عمر خود را صرف محاسبه ارقام این عدد زیبا نمودند اما آنها هرگز نتوانستند تا قبل از ساخت کامپیوتر این عدد را بیش از 1000 رقم اعشار محاسبه نمایند.
امروزه مقدار عدد پی با استفاده از پیشرفته ترین رایانه ها تا میلیونها رقم محاسبه شده است. و تعداد این ارقام هنوز در حال افزایش است.اولین محاسبه کامپیوتری در سال 1949 انجام گرفت و این عدد را تا 2000 رقم محاسبه نمود و در اوخر سال 1999 یکی از سوپر کامپیوترهای دانشگاه توکیو این عدد را تا 206,158,430,000 رقم اعشار محاسبه نمود.