بزرگ ترین عدد اولی که تا کنون کشف شده است، عدد ۱- ۲۳۰۴۰۲۴۵۷ است که ۹۱۵۲۰۵۲ رقم دارد.
عدد اول : هر عدد طبیعی بزرگ تر از یک که فقط بر خودش ویک بخش پذیر باشد،عدد اول نامیده می شود. مثل ۲ ، ۳ ، ۵ ، ۷ ، ...
عدد مرکب : هرعدد طبیعی بزرگ تراز یک که به جز خودش و یک بر عدد طبیعی دیگری نیزبخش پذیر باشد، عددی مرکب نامیده می شود . مثل ۴ ، ۶ ، ۸ ، ۹ ، ...
عدد مرسن :اعداد اولی به شکل ۱- Mn = ۲n که در آن n اول باشد، اعداد اول مرسن نامیده می شوند. مثل اعداد ۳ و۷ که اولین و دومین اعداد اول مرسن هستند.
( ۱- ۲۲ = ۳ و ۱ - ۲۳ = ۷ )
نخستین اعداد اول مرسن عبارت اند از : ۳ ، ۷ ، ۳۱ ، ۱۲۷ ، ۸۱۹۱ ، ۱۳۱۰۷۱ ، ۲۱۴۷۴۸۳۶۴۷ ، ... که به ترتیب با n های اول ۲ ، ۳ ، ۵ ، ۷، ۱۳ ، ۱۷ ، ۱۹ ، ... متناظر هستند.
آقای مونک مارین مرسن فرانسویMonk Marin Mersenne۱۶۴۸-۱۵۸۸) ) که این اعداد را کشف کرد حدوداً ۳۵۰ سال قبل می زیسته است و اکنون ابر رایانه ها به کمک فرمول او سرگرم جستجوی اعداد اول بزرگ هستند.
بی شمار عدد اول وجود دارد اما علی رغم کوشش های فراوان هنوز هیچ رابطه یا نظمی که بتواند نحوه ی پراکندگی این عددها را در بین سایر اعداد نشان دهد، پیدا نشده است. به نظر می رسد که اعداد اول بدون هیچ نظم و الگویی و از روی تصادف در میان اعداد پراکنده شده اند. پیدا کردن بزرگ ترین عدد اول نه تنها برای ریاضیدان ها بلکه برای مهندسان و طراحان نرم افزارهای رایانه ای نیز بسیار مهم است. چرا که یکی از کاربردهای اصلی اعداد اول در مسائل امنیت و ایمنی ارتباطات رایانه ای و به ویژه شبکه های مبادلاتی الکترونیک است. فرض کنید شما یک عدد اول بسیار بزرگ داشته باشید و از آن به عنوان یک کد یا یک امضای الکترونیک استفاده کنید و از عدد غول پیکر اول دیگری نیز به عنوان پاسخ امضاء یا تاییدیه استفاده نمایید. به این دلیل که اعداد اول هیچ توزیع منظمی ندارند بنابراین رمزهایی که بر اساس آن ها ساخته شده باشد به راحتی قابل شکستن نخواهد بود. این انگیزه ی مهمی برای جستجوی اعداد اول بزرگ تر است.بزرگ ترین عدد اول که چهل و سومین عدد مرسن است کشف شد. شبکه رایانه ایGIMPS ( Great Internet Prime Search)عدداول ۱- ۲۳۰۴۰۲۴۵۷ راکه ۹۱۵۲۰۵۲ رقم دارد کشف کرد.
تعریف اعداد اول
عدد طبیعی P>1 را عدد اول می گویند هرگاه تنها مقسوم علیه های مثبت آن 1 و P باشند. به عبارت دیگر یک عدد طبیعی اول است هرگاه جز یک و خودش بر هیچ عدد دیگری بخش پذیر نباشد.
هر عدد طبیعی مخالف یک که اول نباشد مرکب یا تجزیه پذیر می گوییم.
به عنوان مثال اعداد 2و3و5و7 اول و اعداد 12و18و325 مرکب می باشند.
لازم به ذکر است که عدد یک نه اول و نه مرکب است و تنها عدد اول زوج عدد 2 است.
اگر n عددی مرکب باشد می توان گفت:
نتیجه: اگر P عددی اول . a و b اعدادی طبیعی باشند، در این صورت:
قضیه بنیادی حساب:
هر عدد طبیعی بزرگتر از یک را می توان به صورت یکتایی به صورت حاصل ضرب عوامل اول نوشت.
به عبارت دیگر اگر n عددی طبیعی و بزرگتر از 1 باشد:
که در آن ها اعداد اول متمایر می باشند.
این نمایش را تجزیه عدد n به عوامل اول می گوییم.
همچنین اگر n<-1 باشد باز هم می توان n را به صورت یکتایی به صورت حاصل ضرب عوامل اول نوشت:
که در آن ها اعداد اول متمایز می باشند.
توجه: اگر n=1 باشد آنگاه که در ان P هر عدد اولی است.
لازم به توضیح است که ممکن است در تجزیه یک عدد طبیعی به عوامل اول، تعدادی از عوامل یکسان باشند. به عنوان مثال:12=2×2×3
( تمامی فرمول ها در فایل اصلی قابل مشاهده است)