نگاه اجمالی:
مکانیک کلاسیک یکی از قدیمیترین و آشناترین شاخههای فیزیک است. این شاخه با اجسام در حال سکون و حرکت ، و شرایط سکون و حرکت آنها تحت تاثیر نیروهای داخلی و خارجی ، سرو کار دارد. قوانین مکانیک به تمام گستره اجسام ، اعم از میکروسکوپی یا ماکروسکوپی، از قبیل الکترونها در اتمها و سیارات در فضا یا حتی به کهکشانها در بخشهای دور دست جهان اعمال میشود.
. سینماتیک حرکت:
سینماتیک به توصیف هندسی محض حرکت ( یا مسیرهای) اجسام ، بدون توجه به نیروهایی که این حرکت را ایجاد کردهاند ، میپردازد. در این بررسی عاملین حرکت (نیروهای وارد بر جسم) مد نظر نیست و با مفاهیم مکان ، سرعت ، شتاب ، زمان و روابط بین آنها سروکار دارد. در این علم ابتدا اجسام را بصورت ذره نقطهای بررسی نموده و سپس با مطالعه حرکت جسم صلب حرکت واقعی اجسام دنبال میشود.
حرکت اجسام به دو صورت مورد بررسی است:
سینماتیک انتقالی:
در این نوع حرکت پارامترهای سیستم به صورت خطی هستند و مختصات فضایی سیستمها فقط انتقال مییابد. از اینرو حرکت انتقالی مجموعه مورد بررسی قرار میگیرد. کمیت مورد بحث در سینماتیک انتقالی شامل جابهجایی ، سرعت خطی ، شتاب خطی ، اندازه حرکت خطی و...میباشد.
سینماتیک دورانی
در این نوع حرکت برخلاف حرکت انتقالی پارامتر اصلی حرکت تغییر زاویه میباشد. به عبارتی از تغییر جهت حرکت ، سرعت و شتاب زاویهای حاصل میشود. و مختصات فضایی سیستم ها فقط دوران مییابند. جابهجایی زاویهای ، سرعت زاویهای ، شتاب زاویهای و اندازه حرکت زاویهای از جمله کمیات مورد بحث در این حرکت میباشند.
دینامیک حرکت :
دینامیک به نیروهایی که موجب تغییر حرکت یا خواص دیگر ، از قبیل شکل و اندازه اجسام میشوند میپردازد. این بخش ما را با مفاهیم نیرو و جرم و قوانین حاکم بر حرکت اجسام هدایت میکند. یک مورد خاص در دینامیک ایستاشناسی است که با اجسامی که تحت تاثیر نیروهای خارجی در حال سکون هستند سروکار دارد.
پایه گذاران مکانیک کلاسیک:
با این که شروع مکانیک از کمیت سرچشمه میگیرد ، در زمان ارسطو فرایند فکری مربوط به آن گسترش سریعی پیدا کرد. اما از قرن هفدهم به بعد بود که مکانیک توسط گالیله ، هویگنس و اسحاق نیوتن بدرستی پایهگذاری شد. آنها نشان دادند که اجسام طبق قواعدی حرکت میکنند ، و این قواعد به شکل قوانین حرکت بیان شدند. مکانیک کلاسیک یا نیوتنی عمدتا با مطالعه پیامدهای قوانین حرکت سروکار دارد.
قوانین سه گانه اسحاق نیوتن راه مستقیم و سادهای به موضوع مکانیک کلاسیک میگشاید.این قوانین عبارتند از:
قانون اول نیوتن:
هر جسمی به حالت سکون یا حرکت یکنواخت خود در روی یک خط مستقیم ادامه میدهد مگر اینکه یک نیروی خارجی خالص به آن داده شود و آن حالت را تغییر دهد.
قانون دوم نیوتن
آهنگ تغییر تکانه خطی یک جسم با برآیند نیروهای وارد بر آن متناسب بوده و در جهت آن قرار دارد.
قانون سوم نیوتن:
این قانون که به قانون عمل و عکسالعمل معروف است ، اینگونه بیان میشود. هر عملی را عکس العملی است ، مساوی با آن و در خلاف جهت آن.
فرمولبندی لاگرانژی مکانیک کلاسیک:
در برسی حرکت اجسام به کمک قوانین نیوتون اجسام به صورت ذرهای در نظر گرفته میشود. بنابراین ، بررسی حرکات سیستم های چند ذرهای ، اجسام صلب ، دستگاههای با جرم متغیر ، حرکات جفت شده و ... به کمک قوانین اسحاق نیوتن به سختی صورت میگیرد. لاگرانژ و هامیلتون دو روش مستقلی را برای حل این مشکل پیشنهاد کردند. در این روشها برای هر سیستم یک لاگرانژین (هامیلتونین) تعریف کرده ، سپس به کمک معادلات اویلر-لاگرانژ (هامیلتون-ژاکوپی) حرکات محتمل سیستمها مورد بررسی قرار میگیرد.
موارد شکست فرمولبندی اسحاق نیوتن :
تا آغاز قرن حاضر . قوانین اسحاق نیوتن بر تمام وضعیتهای شناخته شده کاملا قابل اعمال بودند. مشکل هنگامی بروز کرد که این فرمولبندی به چند وضعیت معین زیر اعمال شدند:
اجسام بسیار سریع
اجسامی که با سرعت نزدیک به سرعت نور حرکت میکنند.
اجسام با ابعاد میکروسکوپی مانند الکترونها در اتمها.
شکست مکانیک کلاسیک در این وضعیتها ، نتیجه نارسایی مفاهیم کلاسیکی فضا و زمان است.
مکمل مکانیک کلاسیک:
مشکلات موجود در سر راه مکانیک کلاسیک منجر به پیدایش دو نظریه زیر شد:
فرمولبندی نظریه نسبیت خاص برای اجسام متحرک با سرعت زیاد
فرمولبندی مکانیک کوانتومی برای اجسام با ابعاد میکروسکوپی
مکانیک تحلیلی
نگرش کلی
مکانیک تحلیلی همانگونه که از نامش بر میآید ، شاخهای از علم گسترده فیزیک است که به تجزیه و تحلیل حرکت سیستمهای مختلف میپردازد. در مکانیک کلاسیک حرکت در حالت کلی مورد بحث قرار میگیرد. و کمتر به ریزهکاریهای موجود در حرکت پرداخت میشود. به عنوان حرکت یک دستگاه چند ذرهای به طور کامل جرمی میشود ، در صورتیکه در مکانیک کلاسیک بیشتر حرکت تک ذره و در نهایت سیستم دو یا سه ذرهای مورد بحث قرار میگیرد. مکانیک تحلیلی جهت آماده سازی برای کار پیشرفته در فیزیک جنبه اساسی دارد. یکی از اهداف مکانیک تحلیلی تحریک حس کنجکاوی در خواننده است به گونهای که او را به فکر کردن درباره پدیدههای فیزیکی در قالب عبارات ریاضی آماده میکند و زمینهای برای درک عمیق اصول اساسی مکانیک ایجاد میکند. هدف فرا گرفتن مکانیک ، باید این باشد که شئی تقریبا به همان اندازه شهودی برای بیان ریاضی مسائل فیزیکی و همچنین برای تغییر فیزیکی جوابهای ریاضی در خواننده پدید آید.
سیر کلی مطالب در مکانیک تحلیلی
ابتدا مفاهیم اساسی مکانیک و قوانین مکانیک و ثقل به زبان ریاضی بیان میشوند. سپس مساله حرکت در فضای یک بعدی به طور کامل تشریح میگردد. و حرکت نوسانگر هماهنگ به عنوان مهمترین مثال حرکت تک بعدی بررسی میشود، که در این بررسی اعداد مختلف برای نمایش کمیتهای نوسانی استفاده میشود. بنابراین یک توصیف اولیهای از مکانیک به وجود میآید.
در این مرحله جبر برداری به عنوان یک ابزار بسیار قوی در بیان مسائل مکانیک و کاربرد آن در مکانیک مورد برسی قرار میگیرد. و بنابراین حرکت به حالتهای دو بعدی و سه بعدی تقسیم میشود. به این ترتیب پایههای لازم برای مطالعه حرکت سیستمهای مختلف پی ریزی میگردند. در نهایت به مطالعه پیشرفیه تر نظیر مکانیک محیط های پیوسته ، مکانیک لاگرانژی و نظریه ارتعاشات کوچک پرداخت میشود.
مزایا مکانیک
مکانیک علم دقیقی است، یعنی علمی است که قوانین آن به صورت معادلات ریاضی بیان میشوند که نتایج اندازه گیریهای کمی دقیق را بیان و پیشگویی میکند. برتری نظریههای کمی فیزیک فقط در جنبه علمی آنها هست که ما را قادر میسازد که پدیدههای طبیعی را با دقت پیش بینی و کنترل میکنیم. از مقایسه نتایج حاصل از اندازه گیریهای دقیق با پیش بینیهای عددی نظریه میتوانیم به میزان قابل ملاحظهای از صحت نظریه اطمینان حاصل کنیم، یا معلوم داریم که از چه نظر محتاج اصلاح است.
. اغلب میتوان پدیده فیزیکی داد. نقدی را به چند روش کیفی تفریبی توضیح داد و اگر به این روشها قانع باشیم
چه بسا تشخیص نظریه صحیح مقدور نباشد، ولی اگر بتوان نظریهای پدید آورد که نتایج حاصل از ندازه گیریها را تا چهار یا پنج ( حتی دو یا سه ) رقم معنی دار تقریب پیش بینی کند، آن نظریه نمی واند چندان ناصحیح باشد. توافق تقریبی ممکن است فقط تصادفی باشد، ولی توافق نزدیک به کمال محال است ، چنین باشد. از این گذشته موارد بسیاری در تاریخ علوم بوده است که اختلافهای کوچک اما مهم میان نظریه و نتایج حاصل از اندازه گیریهای دقیق باعث به وجود آمدن نظریههای تازه و پر دامنه تری شدهاند. حال آن که اگر فقط به توضیح کیفی پدیدهها قانع میبودیم، نمیتوانستیم حتی به وجود چنین اختلافهای پی ببریم.
تاریخچه
از نظر تاریخی ، مکانیک اولین شاخه از فیزیک است که به صورت علمی دقیق توسعه یافت. دانشمندان یونانی در قرن سوم قبل از میلاد مسیح با قوانین اهرمها و سیالات در حال تعادل استاتیکی آشنا بودند. گسترش شگرف فیزیک در دو سه قرن اخیر با کشف قوانین مکانیک توسط گالیله و اسحاق نیوتن شروع شد. قوانین مکانیک چنان که توسط اسحاق اسحاق نیوتن در اواسط قرن هفدهم ، و قوانین الکترسیته و مغناطیس که توسط ماکسول در حدود دویست سال بعد به زبان ریاضی بیان شدند ، دو نظریه اساسی فیزیک کلاسیک به شمار میرود.
فیزیک نسبیت که با کار اینیشتن شروع شد و فیزیک کوانتوم که بر اساس کارها یزنبرگ و شدودنیگر استوار بود اصلاح و بیان تازه قوانین مکانیک و الکترودینامیک را بر حسب مفاهیم فیزیکی جدید ایجاد میکرد. با این همه فیزیک جدید بر پایههای ساخته شده که توسط فیزیک کلاسیک بنا گردیده است و درک روشن اصول مکانیک و الکترودینامیک کلاسیک هنوز هم برای آموختن فیزیک نسبیت و کوانتم دارای اهمیت اساسی است. به علاوه قوانین مکانیک هنوز هم در اکثر کاربردهای علمی مکانیک در رشتههای مهندسی و نجوم قابل اعمالند. مگر در مواردی که اجسام با سرعتهایی نزدیک به سرعت نور حرکت میکنند و یا هنگامی که اجرام یا فواصل عظیم در کار باشند.
تقسیم بندی مکانیک
مکانیک ، علم حرکت اجسام مادی است و میتوان آن را به سه شاخه سینماتیک ، دینامیک و استاتیک تقسیم کرد. سینماتیک برسی و تشریح حرکات ممکن اجسام مادی است. دینامیک برسی قوانینی است که معین میکند از میان حرکات ممکن ، کدام مورد در هر حرکت اتفاق میافتد. در دینامیک است که مفهوم نیرو وارد میشود.
مسئله اصلی دینامیک این است که برای هر دستگاه فیزیکی ، حرکاتی را که تحت تاثیر نیروهای داده شده بوجود میآید مشخص کند. استاتیک برسی نیروها و دستگاههای نیروها است.
تقسیم بندی مکانیک بر حسب نوع دستگاه فیزیکی
همچنین میتوان مکانیک را بر حسب نوع دستگاه فیزیکی مورد برسی ، تقسیم کرد . ساده ترین دستگاه فیزیکی ، یک تک ذره است. سپس حرکت دستگاهی از ذرات را مطالعه خواهیم کرد. جسم صلب را میتوان نوع خاصی از دستگاه ذرات دانست. و در نهایت حرکت محیطهای پیوسته و مواد الاستیک و پلاستیک .
اهرم
تمام ماشینهای ساده یاد شده اهرم هستند. اهرم از یک میله صلب و یک تکیه گاه تشکیل شدهاست. نیروی وارد به اهرم در یک نقطه باعث می شود که نیروی دیگری در نقطه دیگری روی اهرم به نیروی مقاوم (جسم) وارد شود. این جسم میتواند سنگی باشد که باید از زمین بلند شود. نیروی محرک هم نیرویی است که شخصی جهت بلند کردن سنگ یا جابجایی آن بر دسته اهرم وارد مینماید.
دید کلی
با نگاهی به محل زندگی و کار خود میتوانید به راحتی انواع ماشینهای ساده را ببینید. کلید برق ، دستگیره در ، صفحه تلفن ، کارد ، پیچ گوشتی و حتی کلیدهای صفحه کلید کامپیوتر ، همگی وسایلی هستند که کار انجام شده روی خود را به کار مفید تبدیل میکنند. هر کس بدون اینکه اطلاعی داشته باشد، انواع متعددی از این ماشینهای ساده را در زندگی روزمره به کار میبرد.
هیچ میدانید چرا ...
فندق شکن ، فندق را راحت میشکند.
پنس ، قطعات ریز را راحت بر میدارد.
چیزی را که چاقو به سختی میبرد، قیچی راحت میبرد.
آچار فرانسه خیلی راحت مهره را سفت میکند.
سیم چین خیلی راحت سیم را میبرد یا لخت میکند.
مزیت مکانیکی
هدف از طراحی ماشینهای ساده این است که با اعمال یک نیروی محرک کوچک نیروی بزرگتری تولید شود. به عبارتی ماشین نیروی محرک کوچک را افزایش میدهد. مقدار افزایش نیرو یا نسبت نیروی مقاوم بر نیروی محرک را مزیت مکانیکی ماشین گویند. در دستگاه قرقره مزیت مکانیکی ماشین برابر است با تعداد طنابهایی که وزنه آویزان را نگه میدارد. مزیت مکانیکی اهرم را میتوان با در نظر گرفتن گشتاور نیروهای وارد بر میله به دست آورد.
اگر گشتاور نیروی تولید شده توسط نیروی محرک حول تکیه گاه برابر Fere باشد که در آن re بازوی محرک فاصله نقطه اثر نیرو تا تکیه گاه است. به طور مشابه ، گشتاور نیروی تولید شده توسط وزن سنگ حول تکیه گاه برابر Fere است. که در آن re بازوی مقاوم است. اگر دستگاه در حال تعادل دورانی باشد، این دو گشتاور برابرند. یعنی Fere=Fere که با استفاده از آن مزیت مکانیکی اهرم به صورت زیر دریافت میشود.