تحقیق مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور

تعداد صفحات: 25 فرمت فایل: word کد فایل: 14378
سال: مشخص نشده مقطع: مشخص نشده دسته بندی: مهندسی الکترونیک
قیمت قدیم:۱۸,۰۰۰ تومان
قیمت: ۱۲,۸۰۰ تومان
دانلود فایل
  • خلاصه
  • فهرست و منابع
  • خلاصه تحقیق مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور

    نیمه هادی ها و ساختمان داخلی آنها

    نیمه هادی ها عناصری هستند که از لحاظ هدایت ، ما بین هادی و عایق قرار دارند، و مدار آخر نیمه هادیها ، دارای 4 الکترون می‌باشد.

    ژرمانیم و سیلیکون دو عنصری هستند که خاصیت نیمه هادی ها را دارا می‌باشند و به دلیل داشتن شرایط فیزیکی خوب ، برای ساخت نیمه هادی دیود ترانزیستور ، آی سی (IC ) و .... مورد استفاده قرار می‌گیرد.

    ژرمانیم دارای عدد اتمی‌32 می‌باشد .

    این نیمه هادی ، در سال 1886 توسط ونیکلر[1] کشف شد.

    این نیمه هادی ، در سال 1810توسط گیلوساک[2] و تنارد[3] کشف شد. اتمهای نیمه هادی ژرمانیم و سیلیسیم به صورت یک بلور سه بعدی است که با قرار گرفتن بلورها در کنار یکدیگر ، شبکه کریستالی آنها پدید می‌آید .

    اتم های ژرمانیم و سیلیسیم به دلیل نداشتن چهار الکترون در مدار خارجی خود تمایل به دریافت الکترون دارد تا مدار خود را کامل نماید. لذا بین اتم های نیمه هادی فوق ، پیوند اشتراکی برقرار می‌شود.

    بر اثر انرژی گرمائی محیط اطراف نیمه هادی ، پیوند اشتراکی شکسته شده و الکترون آزاد می‌گردد. الکترون فوق و دیگر الکترون هائی که بر اثر انرژی گرمایی بوجود می‌آید در نیمه هادی وجود دارد و این الکترون ها به هیچ اتمی‌وابسته نیست.

    د ر مقابل حرکت الکترون ها ، حرکت دیگری به نام جریان در حفره ها که دارای بار مثبت می‌باشند، وجود دارد. این حفره ها، بر اثر از دست دادن الکترون در پیوند بوجود می‌آید.

    بر اثر شکسته شدن پیوندها و بو جود آمدن الکترون های آزاد و حفره ها ، در نیمه هادی دو جریان بوجود می‌آید.جریان اول حرکت الکترون که بر اثر جذب الکترون ها به سمت حفره ها به سمت الکترون ها بوجود خواهد آمد و جریان دوم حرکت حفره هاست که بر اثر جذب حفره ها به سمت الکترون ها بوجود می‌آید. در یک کریستال نیمه هادی، تعداد الکترونها و حفره ها با هم برابرند ولی حرکت الکترون ها و حفره ها عکس یکدیگر می‌باشند.

     

    1.     نیمه هادی نوع N وP

    از آنجایی که تعداد الکترونها و حفره های موجود  در کریستال ژرمانیم و سیلیسیم در دمای محیط کم است و جریان انتقالی کم می‌باشد، لذا به عناصر فوق ناخالصی اضافه می‌کنند.

    هرگاه به عناصر نیمه هادی ، یک عنصر 5 ظرفیتی مانند آرسنیک یا آنتیوان تزریق[4] شود، چهار الکترون مدار آخر آرسنیک با چهار اتم مجاور سیلسیم یا ژرمانیم تشکیل پیوند اشتراکی داده و الکترون پنجم آن ، به صورت آزاد باقی می‌ماند.

    بنابرین هر اتم  آرسنیک، یک الکترون اضافی تولید می‌کند، بدون اینکه حفره ای ایجاد شده باشد. نیمه هادی هایی که ناخالصی آن از اتم های پنج ظرفیتی باشد، نیمه هادی نوع N[5] نام دارد.

    در نیمه هادی نوع N ، چون تعداد الکترون ها خیلی بیشتر از تعداد حفره هاست لذا عمل هدایت جریان را انجام می‌دهند . به حامل هدایت فوق حامل اکثریت و به حفره ها حامل اقلیت می‌گویند.

    هرگاه به عناصر نیمه هادی ژرمانیم و سیلیسیم ، یک ماده 3 ظرفیتی مانند آلومنیوم یا گالیم تزریق شود، سه الکترون مدار آخر آلومنیوم با سه الکترون سه اتم سیلیسیم یا ژرمانیم مجاور ، تشکیل پیوند اشتراکی می‌دهند . پیوند چهارم دارای کمبود الکترون و در واقع یک حفره تشکیل یافته است .

    هر اتم سه ظرفیتی، باعث ایجاد یک حفره می‌شود، بدون اینکه الکترون آزاد ایجاد شده باشد. در این نیمه هادی ناخالص شده، الکترون ها فقط در اثر شکسته شدن پیوندها بو جود می‌آیند.

    نیمه هادی هایی که ناخالصی آنها از اتم های سه ظرفیتی باشد، نوع P [6] می‌نامند .

    حفره ها در این نیمه هادی به عنوان حامل های اکثریت و الکترون ها به عنوان حاملهای اقلیت وجود دارد، تبدیل یک نیمه هادی نوع p وn و بالعکس بوسیله عملی به نام «جبران»(Compensation) امکان پذیر می‌باشد[7].

     

    2.     اتصال PN و تشکیل نیمه های دیود

    لحظه ای که دو قطعه نیمه هادی نوع P وN را به هم پیوند می‌دهیم، از آنجایی که الکترون ها و حفره ها قابل انتقال می‌باشند، الکترون های موجود در نیمه هادی نوع N به خاطر بار الکتریکی مثبت حفره ها ، جذب حفره ها می‌گردند. لذا در محل اتصال نیمه هادی نوع P وN ، هیچ الکترون آزاد و حفره وجود ندارد.  

    31) لایه تهی

    گرایش الکترونهای طرف n پخش شدن در تمامی‌جهات است. بعضی از آنها از پیوندگاه می‌گذرند. وقتی الکترونی وارد ناحیه p می‌شود، یک حامل اقلیتی به حساب می‌آید.

    وجود تعداد زیادی حفره در اطراف این الکترون باعث می‌شود که عمر این حامل اقلیتی کوتاه باشد. یعنی الکترون بلافاصله پس از ورود به ناحیه p به داخل یک حفره فرو می‌افتد. با این اتفاق ، حفره ناپدید و الکترون نوار رسانش به الکترون ظرفیت تبدیل می‌شود.

    هر بار که یک الکترون از پیوندگاه می‌گذرد، یک زوج یون تولید می‌کند. دایره هایی که درون آنها علامت مثبت است، نماینده یو نهای مثبت و دایره های با علامت منفی نماینده یو نهای منفی اند . به دلیل بستگی کوالانسی ، یونها در ساختار بلوری ثابت اند و مانند الکترونهای نوار رسانش یا حفره ها نمی‌توانند به این سو و آن سو حرکت کنند.

    هر زوج یون مثبت و منفی را دو قظبی می‌نامیم . ایجاد یک به معنی این است که یک الکترون نوار رسان ش و یک حفره از صحنه عمل خارج شده اند. ضمن اینکه تعداد دو قطبیها افزایش می‌یابد ، ناحیه ای در نزدیکی پیو ندگاه از بارهای متحرک خالی از بار را لایه تهی می‌نامیم .

    32) پتانسیل سد

    هر دو قطبی دارای یک میدان الکتریکی است . بردارها جهت نیروی وارد به بار مثبت را نشان می‌دهند. بنابراین ، وقتی الکترونی وارد لایه تهی می‌شود، میدان الکتریکی سعی می‌کند الکترون را به درون ناحیه n به عقب براند. با عبور هر الکترون، شدت میدان افزایش می‌یابد تا آنکه سرانجام گذرالکترون ازپیوندگاه متو قف می‌شود.

    در تقریب دوم ، باید حامل های اقلیتی رانیز منظور کنیم . به خاطر داشته باشیم که طرف p دارای تعداد الکترون نوار رسانش است که از گرما ناشی می‌شوند. آنها که در داخل لایه تهی واقع اند توسط میدان به ناحیه n برده می‌شوند. این عمل شدت میدان را اندکی کاهش می‌دهد و تعداد کمی‌حاملهای اکثریتی از طرف راست به چپ اجازه عبورمی‌یابند تا میدان به شدت قبلی خود بگردد. به محلی که در آن الکترون ها و حفره ها وجود ندارند را ناحیه تخلیه[8] یا سر کنندگی می‌نامند.    

    حال تصویر نهایی تعادل را در پیوندگاه ارائه می‌دهیم:

    تعداد کمی‌حاملهای اقلیتی از یک طرف پیوندگاه به طرف دیگر سوق می‌یابند. عبور آنها میدان را کاهش می‌دهد مگر اینکه،

    تعداد کمی‌حاملهای اکثریتی از پیوندگاه با عمل پخش گذر کنند و شدت میدان را به مقدار اولیه برگردنند

    میدان موجود بین یونها معرف اختلاف پتانسیلی است که به آن پتانسیل سد می‌گوییم . پتانسیل سد کنندگی برای نیمه هادی سیلیسیم بین 6/0 تا 7/0 ولت و برای نیمه هادی ژرمانیم بین 2/0 تا 3/0 ولت می‌نامند.

    مقدار ولتاژی که لازم است تا سد کنندگی مورد نظر در پیوند PN خنثی شود را ولتاژ سد کنندگی می‌نامند و آن را با Vy نشان می‌دهند.

    هنگام هدایت دیود ، افت ولتاژ دو سر آن در حالت ایده آل صفر و در حالت واقعی ، برابر مقدار ولتاژ سد کنندگی می‌باشد.

    قطب منفی منبع به بلور n، و قطب مثبت آن به بلور p متصل است. این نوع اتصال را بایاس مستقیم می‌نامیم.

    هرگاه پتانسیل منفی به آند(A) و پتانسیل مثبت به کاتد (K) وصل شود، دیود هدایت نمی‌کند و این حالت را بایاس مخالف دیود می‌نامند.

    منبع dc را  وارونه می‌بندیم تا بایاسی معکوس برای دیود برقرار شود.

    میدانی که از خارج اعمال می‌شود با میدان لایه تهی هم جهت است. به این دلیل ، حفره ها و الکترونها به سوی دو انتهای بلوار عقب نشینی می‌کنند (از پیوندگاه دور می‌شوند) . الکترونهای دور شونده پشت سر خود یونهای مثبت بر جای می‌گذارند ، و حفره هایی که می‌روند یونهای منفی باقی می‌گذارند . بنابراین لایه تهی پهنتر می‌شود .هر چه بایاس معکوس بزرگتر باشد لایه تهی پهنتر است.  

    وقتی حفره ها و الکترونها از پیوندگاه دور می‌شوند، یونهای نوزاد اختلاف پتانسیل بین دو طرف لایه تهی را افزایش می‌دهند.

     هر چه لایه تهی پهنتر می‌شود ، این اختلاف پتانسیل بزرگتر است. افزایش پهنای لایه تهی وقتی متوقف می‌شود که اختلاف پتانسیل آن با ولتاژ معکوس اعمال شده مساوی باشد.

    هنگام قطع دیود ، مقاومت دو سر آن زیاد می‌باشد و مانند یک مدار باز عمل می‌کند.

    با توجه به حالت های بررسی شده در خصوص دیود ، منحنی مشخصه ، زیرا به دست می‌آوریم.

     

    33 ولتاژ شکست

    اگر ولتاژ معکوس را افزایش دهیم سرانجام به ولتاژ شکست می‌رسیم ، در دیودهای یکسو ساز(آنهای که ساخته شده اند تا در یک جهت بهتر از جهت دیگر رسانایی داشته باشند)، ولتاژ شکست معمولاً ازV 50 بیشتر است.

    همین که ولتاژ شکست فرا می‌رسد، تعداد زیادی حامل اقلیتی در لایه تهی ظاهر می‌شود و رسانش شدید می‌شود.

  • فهرست و منابع تحقیق مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور

    فهرست:

     

    ندارد.
     

    منبع:

    پل مالومنیر ، آلبرت. اصول الکترونیک 1، ترجمه : دکتر مهدی حسن کاظمینی ، ویراستر:بهرام معلمی. مرکز نشر دانشگاه ، 1369

    خرازی زاده،سعید.اصول الکترونیک 2 .موسسه فرهنگی هنری دیبا گران تهران ، 1378.

    رودی بولر، هانس. الکترونیک قدرت ، ترجمه : دکتر قدیر عزیزی قنادی ، ویراستر: محمد حسین سالمی‌. مرکز نشر دانشگاهی، 1364.

    شاهی، بهزاد. کاربرد عملی ترانزیستورها در مدار الکترونیکی . انتشارات هنر

    مقدم و ایزدی ، اوغازی وعباس. ترانزیستور . انتشارات امیرکبیر، 1363

    هارتلی جونس، مارتین . روشهای الکترونیک از تئوری تا عملی ، ترجمه : بهزاد رضوی و همایون نیکوکار . انتشارات باستان ، 1361.

تحقیق در مورد تحقیق مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور, مقاله در مورد تحقیق مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور, تحقیق دانشجویی در مورد تحقیق مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور, مقاله دانشجویی در مورد تحقیق مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور, تحقیق درباره تحقیق مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور, مقاله درباره تحقیق مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور, تحقیقات دانش آموزی در مورد تحقیق مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور, مقالات دانش آموزی در مورد تحقیق مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور, موضوع انشا در مورد تحقیق مقاله آشنایی با ساختمان و عملکرد نیمه هادی دیود و ترانزیستور
ثبت سفارش
عنوان محصول
قیمت