دیاک :
دیاک عنصری دوپایه است و مشابه ترانزیستوری است که بیس ندارد. از هر دو طرف (بایاس مستقیم و معکوس ) جریان را عبور می دهد و روشن شدن آن بستگی به ولتاژ آستانه تعریف شده ( یا شکست ) دارد.
دیاک درتولید پالس بکار برده می شود.در واقع دیاک و تریستور و ترایاک هم خانواده اند و همگی در حالت کلی مانند دیود خاصیت هدایت کنندگی دارند اما با این تفاوت که تریستور و ترایاک عناصر سه پایه ای هستند که تکامل یافته اند و علاوه بر اینکه از هر دو طرف جریان را عبور میدهند دارای پایه گیت برای کنترل زمان عبور جریان نیز میباشند.
ترایاک :
ترایاک نمونه پیشرفته تر تریستور است ٬ که هدایت دو طرفه ولتاژ از مشخصه های آن به شمار می آید. این قطعه نیز 3 پایه دارد که ((ترمینال شماره ی یک ولتاژ اصلی یا MT1)) و (( ترمینال شماره دو ولتاژ اصلی یا MT2 )) و ((گیت)) نامیده میشوند.
ولتاژ اعمال شده به MT2 نسبت به ولتاژ MT1 چه مثبت باشد و چه منفی میتوان پالسهای تحریک مثبت و منفی را به گیت اعمال کرد(نسبت به MT1).بنابر این ترایاک برای کنترل تمام موج سیگنال AC مناسب بوده و آن را مانند تریستور میتوان مورد استفاده قرار داد.
روشن و خاموش شدن تریستور و ترایاک با سرعت بسیار زیادی صورت میپذیرد در نتیجه پالسهای گذرای بسیار کوتاهی ایجاد میشود ٬ که ممکن است مسافت بسیار زیادی را در طول سیم طی کنند.برای جلوگیری از ایجاد چنین نویزهایی ٬ معمولا استفاده از نوعی فیلتر LC ضروری خواهد بود.
تریستورها :
تریستورها(که به آنها یکسوسازهایی با کنترل سیلیکونی نیز میگویند) 3 پایه داشته ٬ و میتوان آنها را برای قطع و وصل و یا کنترل توان سیگنالهای AC نیز مورد استفاده قرار داد.ترمیستور نیز مانند دیود ((آند)) و ((کاتد)) دارد. اما علاوه بر آنها پایه سومی به نام ((گیت)) نیز وجود دارد ٬ که با اعمال پالس جریانی کوتاه مدت از آن طریق ٬ میتوان تریستور را تحریک کرد.
ترانزیستور قابل تحریک PNPN بود که تریستور یا همان یکسو کننده کنترل شونده سیلیکونی SCR نام گرفت.
از زمانی که اولین تریستور ازنوع یکسو کننده کنترل شونده سیلیکونی در اواخر سال 1957 اختراع شد تا زمان حاضر،پیشرفت های زیادی در الکترونیک قدرت رخ داده است.
تا سال1970 تریستورهای معمولی منحصرا برای کنترل توان در کاربردهای صنعتی بکار میرفتند.
از سال 1970 به بعد انواع مختلفی از عناصر نیمه هادی قدرت ساخته شد و به بازار آمد.
میشه به پنج طبقه تقسیم کرد:
-1دیودهای قدرت
-2تریستورها
-3ترانزیستورهای پیوند دوقطبی قدرتBJT ها
MOSFET-4 های قدرت
5-ترانزیستورهای دوقطبی باگیت عایق شدهIGBT , و ترانزیستورهای با القای استاتیکی SIT
بسته به شرایط موجود این قطعه با سرعت زیادی از حالت هدایت به حالت قطع میرود.در حالت ((قطع)) فقط جریان نشتی بسیار اندکی از تریستور عبور میکند که میتوان آن را نادیده گرفت(مقاومت بسیار بزرگی از خود نشان میدهد) ٬ اما مقاومت آن در حالت (( روشن)) بسیار اندک است.وقتی تریستور روشن شود در همان حالت باقی میماند ( یعنی در واقع در همان حالت قفل میشود) و تا زمانی که جریان مستقیم آن قطع نشده باشد ٬ در این حالت برقرار خواهد ماند.
در مدارهای DC تا زمانی که ولتاژ تغذیه قطع نشود ٬ تریستور همچنان روشن خواهد ماند اما در مدارهای AC با هر بار معکوس شدن قطبیت سیگنال AC ترمیستور به صورت خودکار خاموش خواهد شد.
تریستورها را میتوان به 8 طبقه تقسیم کرد:
الف) تریستورها با کموتاسیون اجباری
ب) تریستور با کموتاسیون خط
ج) تریستور خاموش شونده از طریق گیت GTO
د) تریستورهای هدایت معکوسRCT
ه) تریستور با القای استاتیک SITH
و) تریستورهای کمک گیرنده از گیت برای خاموشیGATT
ز) یکسو کننده های کنترل شونده سیلیکونی فعال شونده با نور LASCR
ح) تریستورهای کنترل شونده(MOS ( MCT
تریستور سه سر دارد:
آند ، ماتد و گیت.وقتی جریان کوچکی از سر گیت به کاتد برود به شرط آنکه پتانسیل آند از کاتد بیشتر باشد تریستور هدایت میکند.هنگامی که تریستور در حال هدایت کردن است مدار گیت کنترلی ندارد و تریستور به هدایت کردن ادامه میدهد.
زمانی که تریستور در حال هدایت است افت ولتاژ مستقیم روی آن مقدار کمی بین 5. تا 2 ولت دارد.برای خاموش کردن تریستور میتوان ولتاژ آند را مساوی یا کوچکتر از کاتد کرد. تریستور ها با کموتاسیون خط بخاطر شکل طبیعی سینوسی ولتاژ ورودی خودشان خاموش میشوندو تریستورها با کموتاسیون اجباری توسط یک مدار اضافی که مدار کموتاسیون نام دارد خاموش میشوند.
ترمیستورها :
یکی از مشخصه های مورد نظر در مورد مقاومتهای معمولی این است که در محدوده وسیعی از تغییرات دمای محیطی ٬ مقاومت آنها تغیر نکند. اما تر میستورها(یعنی مقاومتهای حرارتی) آگاهانه بصورتی ساخته شده اند کهمشخصه هایشان با تغییر دمای محیط تغییر کند.به این ترتیب آنها را میتوان به عنوان سنسور ٬ و یا قطعات جبران کننده تغییرات حرارتی مورد استفاده قرار داد.
دو نوع ترمیستور اصلی وجود دارد : با ضریب حرارتی منفی (N.T.C) و ضریب حرارتی مثبت ( P.T.C) . در دمای 25 درجه سانتیگراد ٬ مقاومت نمونه های معمول N.T.C در حدود چند صد اهم (یا چند کیلو اهم) میباشد که با افزایش دما تا 100 درجه سانتیگراد ٬ مقاوت آن تا حد دهها اهم کاهش می یابد .اما مقاومت P.T.C در محدوده صفر تا 75 درجه سانتیگراد تقریبا ثابت است(معمولا در حدود 100 اهم).در درجه حرارت بالاتر از این حد(معمولا 120 _ 80 درجه سانتیگراد)مقاومت آن به سرعت بالا میرود(حد اکثر تا 10 کیلو اهم).
ترمیستورهای مدرن (ترمیستورهای نیم رسانا(
حساسیت ترمیستورهای امروزی چنان بالاست که تغییری به اندازه یک میلیونیم کلوین را میتوان به کمک آنها آشکار سازی و اندازه گیری کرد. این وضع عملی بودن کاربرد آنها را در دستگاههای جدید به جای پیلهای ترموالکتریک برای اندازه گیری شدت تابش خیلی ضعیف نشان میدهد.
در ابتدا انرژی لازم برای آزاد شدن الکترون از حرکت گرمایی یعنی انرژی داخلی نیم رساناها ، تأمین میشد. ولی این انرژی را جسم میتواند در ضمن جذب انرژی نور به الکترون انتقال دهد. مقاومت چنین نیم رساناهایی بر اثر نور به مقدار زیادی کاهش مییابد. این پدیده را نور رسانش فوتو رسانش یا اثر فوتو الکتریکی ذاتی گویند.
اصطلاح ذاتی در اینجا تأکید بر این واقعیت دارد که الکترونهای آزاد شده با نور ، مانند انتشار الکترون از فلز درخشانی که به “اثر فوتوالکتریک غیر ذاتی“ معروف است، مرزهای جسم را ترک نمیکنند. این الکترونها در جسم باقی میمانند و دقیقا رسانندگی آن را تغییر میدهند. دستگاههایی که بر پایه این پدیده ساخته میشوند را در مقیاس صنعتی برای دستگاههای اعلان و خودکار بکار میبرند (مانند دزدگیر و ...).
فقط بخش کوچکی از الکترونهای آزاد نیم رسانا در حالت آزادند و در جریان شرکت میکنند. اما درست این است که بگوییم همین الکترونها بطور دائم در حالت آزادند و دیگران در حالت مقید. بر عکس ، در نیم رساناها همزمان دو فرآیند رخ میدهد:
از یک طرف با صرف انرژی داخلی یا انرژی نورانی فرآیند آزادسازی الکترونها اتفاق میافتد.
از طرف دیگر ، فرآیند ربایش الکترونهای آزاد ، یعنی ترکیب مجدد آنها با بعضی از یونهای باقیمانده (یعنی ، اتمهایی که الکترونهایشان را از دست دادهاند) مشاهده میشود. بطور متوسط ، هر الکترون آزاد شده فقط مدت کوتاهی (از 3-10 تا 8-10 ثانیه) آزاد میماند. همواره الکترونهایی وجود دارد که پیوسته جایشان را با الکترونهای مقید عوض میکنند. تعادل بین الکترونهای آزاد و مقید از نوع تعادل دینامیکی است.
فوتوسل
نور می تواند به الکترونهای موجود در یک فلز انرژی بدهد و موجب شود که این الکترونها با انرژی جنبشی خاصی سطح فلز را ترک کنند . چون فلز در بدو امر بدون بار است از دست رفتن الکترونها در فلز بار مثبت به جا می گذارد . هر گاه یک رسانا در جایی گذاشته شود که بتواند الکترونها را جمع آوری کند این رسانا بار منفی پیدا می کند . چنین وسیله ای که چشم الکترونی نامیده میشود می تواند برای تولید جریان الکتریکی از نور خورشید مورد استفاده قرار گیرد . توجه داشته باشید که وقتی تجمع بار زیاد می شود الکترونها به علت بار منفی موجود در کلکتور رانده می شوند ( و بار فلز فرار الکترونها را مشکل تر می کند) و در نتیجه الکترونها سرگردان شده و به راه ( نادرستی ) می روند . آن چه برای رفع این مشکل لازم است نوعی (راهرو یک طرفه ) است که امکان می دهد الکترون ها فقط در یک جهت جریان پیدا کنند . این کار تا اندازه محدودی با ساختن صفحه ای حساس به نور ، از فلزی که الکترونها ی خود را به سهولت آزاد کند ، و ساختن کلکتوری از یک فلز که چنین خاصیتی را نداشته باشد ، انجام می شود .
اما تاکنون چشمی الکترونی که بتواند به عنوان یک منبع انرژی مفید به کار آید ساخته نشده است . یک ( راهرو یک طرفه ) بهتر ممکن است به صورت ساندویچی از دو لایه ماده متفاوت ساخته شود به طوری که نور را جذب کند و الکتریسیته را بسیار بهتر از یک عایق ولی نه به خوبی یک فلز هدایت کند . سیلیسم و ژرمانیوم نمونه های خوبی از این گونه موادند ( که نیم رسانا نامیده می شوند) . خاصیت اتصالی بین دو نیم رسانا ی مناسب این است که جریان الکتریکی در آن ها فقط در یک جهت می تواند جریان پیدا کند.
هرگاه نور به اتصال مذکور برخورد کند ، همچنان که درباره چشم الکترونی دیدیم ، سبب جدایی بار می شود . جدایی بار بین دو لایه اختلاف پتانسیل ایجاد می کند ، این فرایند را اثر فوتوولتایی میگویند زیرا نور ولتاژ ایجاد می کند . هرگاه مداری آن دو را به هم متصل کند ولتاژ جریان الکتریکی به وجود میآورد . این(ساندویچ )را فوتوسل یا سلول خورشیدی می نامند .
چند چیز مانع می شود که سلول خورشیدی تمام انرژی نور را به الکتریسیته تبدیل کند . نخست آن که مقداری از نور باز تابیده می شود و مقداری از آن هم به طور مستقیم از سلول می گذرد ، این نور هرگز مورد استفاده سلول قرار نمی گیرد . دوم آنکه هرچند اتصال مذکور (راهروی یک طرفه ) خوبی است ولی کامل نیست . بدین معنی از بارهای + و – ایجاد شده در واقع بار دیگر درون سلول با هم ترکیب میشوند این زاییده را (بار ترکیب) میگویند . نتیجه کلی این رویداد آن است که مقداری از انرژی به الکتریسیته تبدیل نشده بلکه سبب گرم کردن سلول می شود .
پژوهشگران در اینباره دو هدف عمده را برای اصلاح سلولهای خورشیدی دنبال می کنند
-1باز ترکیب بارهای + و – را کاهش میدهند تا سلول در حد ممکن کارآیی پیدا کند .
-2سلول هایی بسازند که تولید انبوه آنها به طور ارزان امکان پذیر باشد .
دیودها (Diodes)
همانطور که می دانید دیود ها جریان الکتریکی را در یک جهت از خود عبور می دهند و در جهت دیگر در مقابل عبور جریان از خود مقاومت بالایی نشان می دهند. این خاصیت آنها باعث شده بود تا در سالهای اولیه ساخت این وسیله الکترونیکی ، به آن دریچه یا Valve هم اطلاق شود. از لحاظ الکتریکی یک دیود هنگامی عبور جریان را از خود ممکن می سازد که شما با برقرار کردن ولتاژ در جهت درست (+ به آند و - به کاتد) آنرا آماده کار کنید. مقدار ولتاژی که باعث میشود تا دیود شروع به هدایت جریان الکتریکی نماید ولتاژ آستانه نامیده می شود که چیزی حدود 0.6 تا 0.7 ولت می باشد.
دو نمونه از انواع دیودها و منحنی مشخصه یک دیود
اما هنگامی که شما ولتاژ معکوس به دیود متصل می کنید (+ به کاتد و - به آند) جریانی از دیود عبور نمی کند، مگر جریان بسیار کمی که به جریان نشتی یا Leakage معرف است که در حدود چند µA یا حتی کمتر می باشد. این مقدار جریان معمولآ در اغلب مدار های الکترونیکی قابل صرفنظر کردن بوده و تاثیر در رفتار سایر المانهای مدار نمیگذارد. اما نکته مهم آنکه تمام دیود ها یک آستانه برای حداکثر ولتاژ معکوس دارند که اگر ولتاژمعکوس بیش از آن شود دیود می سوزد و جریان را در جهت معکوس هم عبور می دهد. به این ولتاژ آستانه شکست یا Breakdown گفته می شود.
انواع دیودهای قدرت
بسته به مشخصه های بازیابی و روشهای ساخت دیودهای قدرت را به سه گروه می توان تقسیم کرد.
۱-دیودهای استاندارد یا همه منظوره
۲-دیودهای بازیابی معکوس
۳-دیودهای شاتکی
دیودهای همه منظوره
دیودهای یکسوکننده همه منظوره زمان بازیابی معکوس نسبتا زیادی دارند که در حدود ۱μs است و در کاربردهای سرعت پایین بکار می روند که زمان بازیابی چندان اهمیت ندارد محدوده جریان این دیودها از کمتر از ۱ آمپر تا چند هزار آمپر و محدوده ولتاژ ۵۰ ولت تا حدود ۵۰ کیلو ولت می باشد . این دیودها معمولا به روس دیفیوژن ساخته می شوند . با این وجود یکسو کننده های آلیاژی که در منابع تغذیه دستگاههای جوشکاری بکار می روند از لحاظ هزینه به صرفه ترند و محدوده کاری آنها تا ۳۰۰ آمپر و ۱۰۰۰ ولت می رسد.
دیودهای بازیابی معکوس
دیودهای بازیابی سریع زمان بازیابی کوچک در حدود ۵μs دارند. این دیودها در مدارهای مبدل های dc به dc و dc به ac که سرعت بازیابی اغلب اهمیت بحرانی دارد بکار میروند. محدوده جریانی کارکرد این دیودها از کمتر از یک آمپر تا چند صد آمپر و محدوده ولتاژشان از ۵۰ ولت تا حدود ۳ کیلو ولت است.
برای محدوده بالای ۴۰۰ ولت دیودهای بازیابی سریع معمولا به روش دیفیوژن ساخته می شوند و زمان بازیابی بوسیله دیفیوژن طلا یا پلاتین کنترل می شود.برای مخدوده ولتاژ کمتر از ۴۰۰ ولت دیود های اپی تکسیال سرعت کلید زنی بیشتری نسبت به دیود های دیفیوژنی دارند. دیود های اپی تکسیال ژهنای بیس کمی دارند که باعث می شود زمان بازیابی کوچکی در حدود ۵۰ns داشته باشند .
دیودهای شاتکی
مشکل ذخیره بار در پیوند p-n در دیودهای شاتکی حذف با به حداقل رسیده است.این کار از طریق یک سد پتانسیل که میان یک فلز ویک نیمه هادی وصل می شودانجام می پذیرد. یک لایه فلزی روی یک لایه اپی تکسیال باریک از سیلیکون نوع n قرار داده می شود.سد پتانسیل رفتار یک پیوند p-n شبیه سازی می کند. عمل یکسو سازی فقط به حامل های اکثریت بستگی دارد و در نتیجه حامل های اقلیت اضافی برای ترکیب شدن وجود ندارند. اثر بازیابی منحصرا به خاطر ظرفیت خازنی خود پیوند نیمه هادی است
انواع دسته بندی دیودها
در دسته بندی اصلی ، دیودها را به سه قسمت اصلی تقسیم می کنند : دیودهای سیگنال (Signal) که برای آشکار سازی در رادیو بکار می روند و جریانی در حد میلی آمپر از خود عبور می دهند ، دیودهای یکسوکننده (Rectifiers) که برای یکسوسازی جریانهای متناوب بکاربرده می شوند و توانایی عبور جریانهای زیاد را دارند و بالآخره دیود های زنر (Zener) که برای تثبیت ولتاژ از آنها استفاده می شود.
1- دیودهای سیگنال
این نوع از انواع دیودها برای پردازش سیگنالهای ضعیف - معمولا" رادیویی - و کم جریان تا حداکثر حدود 100mA کاربرد دارند. معروفترین و پر استفاده ترین آنها که ممکن است با آن آشنا باشید دیود 1N4148 است که از سیلیکون ساخته شده است و ولتاژ شکست مستقیم آن 0.7 ولت است. اما برخی از دیود های سیگنال از ژرمانیم هم ساخته می شوند ، مانند OA90 که ولتاژ شکست مستقیم پایینتری دارد ، حدود 0.2 ولت. به همین دلیل از این نوع دیود بیشتر برای آشکار سازی امواج مدوله شده رادیویی استفاده می شود. بصورت یک قانون کلی هنگامی که ولتاژ شکست مستقیم دیود خیلی مهم نباشد ، از دیودهای سیلیکون استفاده می شود. دلیل آن مقاومت بهتر آنها در مقابل حرارت محیط یا حرارت هنگام لحیم کاری و نیز مقاومت الکتریکی کمتر در ولتاژ مستقیم است. همچنین دیود های سیلیکونی سیگنال معمولا" در ولتاژ معکوس جریان نشتی بسیار کمتری نسبت به نوع ژرمانیم دارند. از کاربرد دیگری که برای دیودهای سیگنال وجود دارد می توان به استفاده از آنها برای حفاظت مدار هنگامی که رله در یک مدار الکترونیکی قرار دارد نام برد.