هِندِسه مطالعه انواع روابط طولی و اشکال و خصوصیات آنها است. این دانش همراه با حساب یکی از دو شاخه قدیمی ریاضیات است.
واژه هندسه عربی شده واژه «اندازه» در فارسی است. در زبان انگلیسی به آن geometry و در زبان فرانسه به آن géométrie میگویند که هردو از γεωμετρία (گئومتریا) در زبان یونانی آمده که به معنای اندازهگیری زمین است.
کلاسبندی هندسه
هندسه مقدماتی به دو شاخه تقسیم می گردد :
هندسه مسطحه
هندسه فضایی
در هندسه مسطحه ، اشکالی مورد مطالعه قرار میگیرند که فقط دو بعد دارند، هندسه فضایی ، مطالعه اشکال هندسی سه بعدی است. این بخش از هندسه در مورد اشکال سه بعدی چون مکعب ها ،استوانه ها، مخروط ها، کره ها و غیره است.
در هندسه مدرن شاخههای زیر مورد مطالعه قرار میگیرند:
هندسه تحلیلی
هندسه برداری
هندسه برداری
هندسه جبری
هندسه محاسباتی
هندسه اعداد صحیح
هندسه اقلیدسی
هندسه نااقلیدسی
هندسه تصویری
هندسه ریمانی
هندسه ناجابجایی
هندسه هذلولوی
تاریخچه هندسه
احتمالاً بابلیان و مصریان کهن نخستین کسانی بودند که اصول هندسه را کشف کردند. در مصر هر سال رودخانه نیل طغیان میکرد و نواحی اطراف رودخانه را سیل فرا میگرفت. این رویداد تمام علایم مرزی میان املاک را از بین میبرد و لازم میشد دوباره هر کس زمین خود را اندازهگیری و مرزبندی کند. مصریان روش علامتگذاری زمینها با تیرک و طناب را ابداع کردند. آنها تیرکی را در نقطهای مناسب در زمین فرو میکردند و تیرک دیگری در جایی دیگر نصب میشد و دو تیرک با طنابی که مرز را مشخص میساخت به یکدیگر متصل میشدند. با دو تیرک دیگر زمین محصور شده و محلی برای کشت یا ساختمان سازی مشخص میشد.
در آغاز هندسه برپایه دانستههای تجربی پراکندهای در مورد طول و زاویه و مساحت و حجم قرار داشت که برای مساحی و ساختمان و نجوم و برخی صنایع دستی لازم میشد. بعضی از این دانستهها بسیار پیشرفته بودند مثلاً هم مصریان و هم بابلیان قضیه فیثاغورث را ۱۵۰۰ سال قبل از فیثاغورث میشناختند.
یونانیان دانستههای هندسی را مدون کردند و بر پایهای استدلالی قراردادند. برای آنان هندسه مهمترین دانشها بود و موضوع آن را مفاهیم مجردی میدانستند که اشکال مادی فقط تقریبی از آن مفاهیم مجرد بود. در سال ۶۰۰ قبل از میلاد مسیح، یک آموزگار اهل ایونیا (که در روزگار ما بخشی از ترکیه بهشمار میرود) به نام طالس، چند گزاره یا قضیه هندسی را به صورت استدلالی ثابت کرد. او آغازگر هندسه ترسیمی بود. فیثاغورث که او نیز اهل ایونیا و احتمالاً از شاگردان طالس بود توانست قضیهای را که بهنام او مشهور است اثبات (ریاضی) کند. البته او واضع این قضیه نبود.
اما دانشمندی به نام اقلیدس که در اسکندریه زندگی میکرد، هندسه را به صورت یک علم بیان نمود. وی حدود سال ۳۰۰ پیش از میلاد مسیح، تمام نتایج هندسی را که تا آن زمان شناخته بود، گرد آورد و آنها را به طور منظم، در یک مجموعه ۱۳ جلدی قرار داد. این کتابها که اصول هندسه نام داشتند، به مدت ۲ هزار سال در سراسر دنیا برای مطالعه هندسه به کار میرفتند.
براساس این قوانین، هندسه اقلیدسی تکامل یافت. هر چه زمان میگذشت، شاخههای دیگری از هندسه توسط ریاضیدانان مختلف، توسعه مییافت. امروزه در بررسی علم هندسه انواع مختلف این علم را نظیر هندسه تحلیلی و مثلثات، هندسه غیر اقلیدسی و هندسه فضایی مطالعه میکنیم.
خدمت بزرگی که یونانیان در پیشرفت ریاضیات انجام دادند این بود که آنان احکام ریاضی را به جای تجربه بر استدلال منطقی استوار کردند. قبل از اقلیدس، فیثاغورث (572-500 ق.م) و زنون (490 ق.م.) نیز به پیشرفت علم ریاضی خدمت بسیار کرده بودند.
در قرن دوم قبل از میلاد ریاضیدانی به نام هیپارک، مثلثات را اختراع کرد. وی نخستین کسی بود که تقسیم بندی بابلیها را برای پیرامون دایره پذیرفت. به این معنی که دایره را به ۳۶۰ درجه و درجه را به ۶۰ دقیقه و دقیقه را به ۶۰ قسمت برابر تقسیم نمود و جدولی براساس شعاع دایره به دست آورد که وترهای بعضی قوسها را به دست میداد و این قدیمیترین جدول مثلثاتی است که تاکنون شناخته شده است.
بعد از آن دانشمندان هندی موجب پیشرفت علم ریاضی شدند. در سده پنجم میلادی آپاستامبا، در سده ششم، آریابهاتا، در سده هفتم، براهماگوپتا و در سده نهم، بهاسکارا در پیشرفت علم ریاضی بسیار مؤثر بودند.
تقسیم بندی هندسه
هندسه مقدماتی به دو قسمت تقسیم میگردد:
هندسه مسطحه .
هندسه فضائی.
هندسه خطی.
در هندسه مسطح، اشکالی مورد مطالعه قرار میگیرند که فقط دو بعد دارند، هندسه فضایی، مطالعه اشکال هندسی سه بعدی است. این بخش از هندسه در مورد اشکال سه بعدی چون مکعبها ،استوانه ها، مخروط ها، کرهها و غیره است.
هندسه مطلق
هندسه مطلق Absolute geometry
یانوش بویویی به هندسهیی که بدون اصل توازی و صرفاً بر اساس چهار اصل اول اقلیدس اثبات میشوند. نام هندسهٔ مطلق را برگزید. اما امروزه به این هندسه، بیشتر هندسه نتاری میگویند.
هندسه نتاری
اقلیدس 28 قضیه نخست اصول خود را بر اساس چهار اصل موضوع نخست اثبات کرد و از قضیه 29 بود که استفاده از اصل پنجم آغاز میشود. در واقع پس از آن که اصل توازی موجب انشقاق هندسه شد ریاضیدانها هندسهٔ بدون استفاده از اصل توازی ابداع کردند که به آن هندسهٔ نتاری میگویند. اگر به خواهیم بر اساس "مبانی هندسه" هیلبرت تعریف خود را گسترش دهیم. هندسهٔ نتاری مربوط به آن قضایای میشود که با استفاده از بنداشتهای وقوع، میانبود، قابلیت انطباق و پیوستگی و بدون استفاده از بنداشت توازی ثابت شوند. یانوش بویویی به این نوع هندسه، هندسهٔ مطلق میگفت اما و. پرنوویچ و م. جردن نام نتاری را برای آن برگزیدند.
هندسه هذلولوی
هندسه هذلولوی یکی از هندسههای نااقلیدسی است که به هندسه لباچفسکی نیز مشهور است. نام انگلیسی این نوع هندسه, یعنی (Hyperbolic), از کلمهٔ یونانی هیپربالئین به معنی "افزایش یافتن" گرفته شده است که در آن فاصلهٔ میان نیمخطها در اصل توازی افزایش مییابد.
هندسه نااقلیدسی هندسههایی که اقلیدسی نیستند از مطالعهٔ عمیقتر موضوع توازی در هندسهٔ اقلیدسی پیدا شدهاند. دو نیمخط موازی عمود بر پاره خط PQ را در نمودار شماره 1 در نظر بگیرد. در هندسهٔ اقلیدسی فاصلهٔ (عمودی) بین دو نیمخط هنگامی که به سمت راست حرکت میکنیم فاصلهٔ p تا Q باقی میمانند؛ ولی در اوایل سدهٔ نوزدهم دو هندسهی دیگر پیشنهاد شد. یکی هندسهٔ هذلولوی (از کلمهٔ یونانی هیپربالئین به معنی "افزایش یافتن") که در آن فاصلهٔ میان نیمخطها افزایش مییابد و دیگری هندسهٔ بیضوی (elliptic geometry) (از کلمهٔ یونانی ایپلن "کوتاه شدن") که در آن فاصله رفته رفته کم میشود و سرانجام نیمخطها همدیگر را میبرند. این هندسهٔ نااقلیدسی بعدها توسط ک.ف. گاوس و گ. ف. ب. ریمان در قالب هندسهٔ کلیتری بسط داده شدند. (همین هندسهٔ کلیتر است که در نگرهٔ نسبیت عام اینشتاین مورد استفاده قرار گرفته است.)