پیش بینی سرعت و جهت بادهای فرساینده در ایران
مقدمه
فرسایش بادی یک معضل جدی در بیشتر مناطق خشک و نیمه خشک دنیا و ایران است . توانائی پیش بینی دقیق فرسایش بادی خاک برای بسیاری منظورها ، از جمله برنامه های حفاظتی ، منابع طبیعی ، و کاهش آلودگی هوا ناشی از طوفان ضروری است ( 3 ) . از آنجایی که نیروی باد در طول سال ، ماه وحتی روز تا حد زیادی تغییر می نماید ، و همچنین قدرت فرسایندگی باد بستگی به توان سوم سرعت باد دارد . به منشور پیش بینی و کنترل فرسایش بادی در هر منطقه توزیع سرعت باد حائز اهمیت میباشد . همچنین علاوه برسرعت باد ، دانستن چگونگی تغییرات جهت باد در منطقه نیز امری ضروری است . زیرا نسبت جهت باد به جهت اضلاع زمین ، بادشکن ها ، ردیف کاشت گیاهان ، و شخم زمین ، نقش مهمی را در پیش بینی مقدار و جهت فرسایش بادی ایفا می کند ( 4) . مدل های مختلفی برای نشان دادن توزیع سرعت باد استفاده شده است . بی شک توزیع ویبل یکی از گسترده ترین توزیع هایی است که تا بحال برای نشان دادن پراکندگی سرعت باد مورد استفاده قرار گرفته است ( 5 ) . اهداف این پژوهش عبارت بودند از : 1 ) شبیه سازی ساعتی سرعت و جهت باد به روش استوکاستیک با استفاده از توزیع ویبل ، به منظور استفاده در مدل WEPS ، برای پیش بینی فرسایش بادی در شهرهای مختلف ایران ، 2) آزمون اعتبار سنجی توزیع ویبل و مدل کامپیوتری windpred ، در پیش بینی ساعتی سرعت و جهت باد ، . 3) ترسیم نقشه های سرعت و جهت بادهای فرساینده در ایران .
مواد و روشها
ابتدا 38 شهر که دارای حداقل 10 سال آمار ساعتی سرعت و جهت باد بودند ، انتخاب گردیدند . در مرحله بعد تعداد سال آماری هر شهری به دو دوره برابر تقسیم گردید ، بطوریکه از دوره اول برای شبیه سازی و از دوره دوم برای آزمون اعتبار سنجی مدل ( با استفاده از معنی دار بودن و نبودن ضرائب همبستگی ) استفاده شد . سپس با استفاده از توزیع ویبل ، شبیه سازی سرعت و جه باد بصورت ساعتی توسط برنامه Windpred ( 2 و 1 ) انجام گرفت . تابع توزیع تجمعی ویبل F (U) به صورت زیر میباشد :
(1) [-(u/c)k]F(u)=1-exp
که در این معادله u سرعت باد ( متر بر ثانیه ) ، c، پارامتر مقیاس ( با واحد سرعت ) ، و k پارامتر شکل ( بدون واحد ) ، میباشند ( 6 ) . در هرمرحله بعد ، دوره های باد آرام حذف و فراوانی باد در هر گروه سرعتی نرمالیزه گردیدند . بنابراین :
(2) [-(u/c)k]= 1-exp [ (F(u)-F0 ) / (1-F0)] F1(u) =
که در آن F1(u) توزیع تجمعی در حالتی است که دوره های باد آرام حذف شده است ، و F0 فراوانی دوره های باد آرام میباشد . پارامترهای k, c به روش حداقل مربعات و بکارگیری تابع توزیع تجمعی محاسبه شدند ( معادله 2 ) .
با استفاده از پارامترهای توزیع ویبل (c,k) فراوانی سرعت باد در هر ماه و در سال بصورت تجمعی و نرمال شده بدست آمد . به منظور شبیه سازی جهت باد ، اعداد بین صفر و یک بصورت تصادفی انتخاب ، و با جدول توزیع تجمعی جهت باد مقایسه گردیدند . برای شبیه سازی سرعت باد براساس جهت باد تعیین شده ، پارامترهای c،k توزیع ویبل برای آن جهت خاص از جدول های تعیین شده قبلی ، بدست امد و از معادله زیر استفاده گردید :
U= c{-1n[1-(F(u)-F0]/(1-F0)}1/k
با استفاده از روش انتخاب عدد تصادفی ، یک عدد بین صفر و یک انتخاب گردید . سپس این مقدار را به جای F(u) قرارداده و در نهایت سرعت باد شبیه سازی شده محاسبه گردید . به دلیل اینکه هدف شبیه سازی سرعت باد بصورت ساعتی بود ، با استفاده از رابطه زیر سرعت باد بصورت ساعتی شبیه سازی شد :
U(1)= Urep+0.5(umax-Umin) Cos[2p(24-hrmax+I)/24]
که در آن ، hrmax ساعتی از روز که سرعت باد حداکثر است ، I شاخص ساعت روز ، Umax سرعت باد حداکثر ، Umin سرعت باد حداقل ، و Urep سرعت شبیه سازی شده حاصل از معادله( 3 ) میباشد .
در مرحله بعد ، با استفاده از نتایج شبیه سازی شده ، نقشه درصد سرعت بادهای فرساینده و جهت غالب آنها ، و همچنین نقشه حداکثر سرعت باد و جهت غالب باد در هر ایستگاه با استفاده از نرم افزارهای SURFER و CorelDRAW10 برای ماه های مختلف سال تهیه گردید . بعنوان نمونه نقشه درصد سرعت بادهای فرساینده و جهت غال آنها ، برای ماه جولای نشان داده شده است ( شکل 1 ) لازم به ذکر است که در این نقشه ها ، شهرها به صورت دایره ، اسم شهرها واطلاعات مربوط به سرعت باد شهرها در داخل دایره و جهت باد غالب آنها هم بر روی دایره بشکل حروف و بصورت علامت پیکان ، نمایش داده شده است . همچنین برای نشان دادن سرعت حداکثر و درصد سرعت بادهای فرساینده ، از رنگهای مختلفی نیز استفاده گردید .
نتایج و بحث
با استفاده از داده های خام سرعت باد متعلق به نیمه اول هر دوره ، توزیع تجمعی ویبل بصورت ماهانه در تمامی ایستگاه ها ترسیم شد . سپس با استفاده از داده های خام همان دوره در مدل ، مقادیر شبیه سازی سرعت باد بدست آمد در ادامه ، ضریب های همبستگی بین توزیع تجمعی ویبل و سرعت شبیه سازی شده مشخص ، و معنی دار بودن یا نبودن آنها نیز تعیین گردیدند . مقادیر ضریب های همبستگی در تمامی ایستگاه ها و در تمامی ماه های سال بین 93/0 تا 0/1 بوده و در سطح یک درصد معنی دار بودند . بنابراین میتوان ادعا نمود که داده های سرعت باد از توزیع ویبل پیروی نموده ، و استفاده از این توزیع در امر شبیه سازی سرعت باد یتواند قابل قبول میباشد . در ادامه هم به منظور اعتبار سنجی مدل کامپیوتری Windpred ، مقایسه هایی بین توزیع فراوانی سرعت و جهت باد شبیه سازی شده ( با استفاده از داده های خام دوره اول ) ، و داده های خام دوره دوم صورت گرفت ، و ضریب های همبستگی آنها نیز تعیین گردیدند . مقادیر ضریب های همبستگی در تمامی ایستگاه ها و در تمامی ماه های سال ، برای سرعت باد بین 94/0 تا 0/1 ، و برای جهت باد بین 46/0 تا 0/1 بودند ، که در سطح یک درصد معنی دار می باشند . از اینرو میتوان نتیجه گرفت که همبستگی بسیار قوی بین سرعت و جهت باد شبیه سازی شده و داده های خام وجود دارد . در مرحله بعد درصد سرعت بادهای فرساینده و جهت غالب آنها در شهرهای مختلف ایران در ماه جولای ترسیم شد ( شکل 1 ) همانطور که مشاهده میشود ، در ماه جولای ، بیشترین میزان بادهای فرساینده متعلق به شهر زابل ( %7/61 ) با جهت باد غالب شمال شمال غربی ،و کمترین میزان بادهای فرساینده ، متعلق به شهر تبریز ( %1/0 ) با جهت باد غالب شرق میباشند .
مطالعه حساسیت خاک سطحی اراضی منطقه رودشت اصفهان به فرسایش بادی
مقدمه
بخش وسیعی از کشور ایران را مناطق خشک و نیمه خشک فرا گرفته است . فرسایش بادی از مهمترین عوامل تخریب و هدر رفت خاک در این مناطق به شمار میرود ، لذا یافتن راههایی که بتواند این فرآیند را کنترل و یا به حداقل ممکن کاهش دهد ، امری جدی محسوب میگردد . تعیین فرسایش پذیری اراضی و شناخت عوامل مؤثر بر آن ( براساس اطلاعات واقعی و دقیق در مورد شدت و مقدار فرسایش فعلی منطقه ) می تواند اساس برنامه جامع حفاظت خاک و اولویت بندی مراحل اجرایی آن قرار گیرد . در حال حاضر روشهای تجربی متنوعی جهت برآورد فرسایش پذیری اراظی ارائه گردیدهاند ( 1 و 4 ) که علیرغم اینکه از نظر کاربردی راحت و ساده اند ، در مناطقی با خاکهای فرسایش یافته و یا اراضی کویری به دلیل نقش حفاظتی سنگریزه ها وسله های نمکی از کاربری مناسبی برخوردار نمی باشند ( 1 ) . نتایج حاصل از تونل باد قابل حمل در صحرا ، دقیق و مطمئن تربوده و تا حد امکان تأثیر کلیه پارامترها و اثرات متقابل آنها به ویژه اثرات بافت و ساختمان به خوبی دخالت داده میشود ( 1 ) . فرسایش پذیری خاک سطحی ، مهمترین فاکتور مؤثر در کلیه مدلهای برآورد فرسایش بادی میباشد که متأثر از مرفولوژی و خصوصیات فیزیکی و شیمیایی خاک سطحی مانند بافت و ساختمان ( 2 ) ، مقدار و انرژی ذرات ساینده ( 5 ) ، دانسیته و پایداری مکانیکی سله سطحی ( 2 و 5 ) ، پوشش سطحی خاک با عوامل غیر قابل فرسایش ( سنگریزه ، کلوخه و بقایای گیاهی ) و زبری سطح ( 3 ) ، رطوبت خاک سطحی ( 2 ) و اثرات متقابل آنها میباشد . این تحقیق به منظور مطالعه سرعت آستانه فرسایش و فرسایش پذیری نسبی اراضی منطقه رودشت اصفهان و تأثیر مرفولوژی و خصوصیات خاک سطحی بر آن و نیز مطالعه تأثیر دستکاری نمودن خاک سطحی اراضی منطقه بر تشدید فرسایش پذیری آن و در نهایت ارائه راهکارهای مناسب و کاربردی جهت کاهش تخریب و هدر رفت خاک منطقه انجام گرفت .
مواد و روشه
منطقه مورد مطالعه در شرق اصفهان ، اطراف رودخانه زاینده رود و در محدوده عرض جغرافیایی '20 ˚32 تا 34 ˚32 شمالی و طول '52 تا '34 ˚52 شرقی واقع شده است . ارتفاع متوسط منطقه از سطح دریا 1450 متر و متوسط بارندگی سالیانه در ایستگاه ورزنه 5/68 میلیمتر است . بادهای غالب منطقهکه ناشی از جریانات مدیترانه ای است ، از سمت غرب و جنوب غرب می وزد جهت نیل به اهداف ، ابتدا با تلفیق نقشه های خاک ، شوری قلیانیت ، زمین شناسی ، توپوگرافی و مشاهدات صحرایی و نتایج تجزیه آزمایشگاهی خاک سطحی فاز سریهای مختلف ، 15 واحد کاری ( کوچکترین واحدهای همگون از لحاظ مرفولوژی و خصوصیات فیزیکی و شیمیایی خاک سطحی ) مشخص شد . سپس در هر واحد مطالعاتی با استفاده از تونل باد قابل حمل صحرایی ، فرسایش پذیری خاک سطحیاراضی در مدت 30 دقیقه وزش باد باسرعت 10 متر بر ثانیه در ارتفاع 20 سانتیمتری و نیز سرعت آستانه فرسایش در دو وضعیت طبیعی و دستخورده تعیین گردید . از خصوصیات فیزیکی خاک سطحی ، توزیع اندازه خاکدانه ها به دو روش الک خشک و مرطوب ، بافت خاک به روش پیپت و درصد رطوبت وزنی و از خصوصیات شیمیایی ph,EC و غلظت آنیونها و کاتیونهای محلول در عصاره گل اشباع ، میزان آهک و ماده آلی و از خصوصیات مرفولوژی سطح خاک ، درصد سنگریزه سطحی و قطر متوسط آن ، ضخامت سله و میزان زبری سطح خاک اندازه گیری شد .
نتایج و بحث
نتایج و تجزیه واریانس داده ها نشان می دهد که اثر واحدهای مختلف بر فرسایش پذیری و سرعت آستانه در سطح احتمال 1 درصد معنی دار است . مقایسه میانگین اختلاف فرسایش پذیری و سرعت آستانه در دو وضعیت طبیعی و دستخورده در واحدهای مطالعاتی نشان داد ، اختلاف فرسایش پذیری در کلیه واحدها در سطح احتمال 1 معنی دار است در حالیکه اختلاف سرعت آستانه در واحدهای 2 ، 6 ،11 و 15 در سطح احتمال 5 درصد معنی دار نمیباشد که علت آن ، وجود ذرات فرسایش پذیر لس بر روی سطح این واحدها میباشد .
خاک سطحی واحدهای 6 ، 8 و 13 حاوی کریستالهای گچ و آهک بوده و نسبت به فرسایش بادی ، حساس میباشند ولی پوشش سنگریزه ای سطح این اراضی ، به خوبی از خاک زیرین محافظت می نماید . فرسایش پذیری نسبی این واحدها در حالت طبیعی جزیی تا کم است ، که تا حدی مربوط به رسوبات بادی است که از اراضی مجاور برخاسته و بین سنگریزه ها بدام افتاده است . در صورت دستکاری خاک سطحی در این واحدها ، فرسایش پذیری آنها زیاد تا خیلی زیاد میشود که بیانگر نقش بسیار مؤثر پوشش سنگریزه ای در کاهش فرسایش پذیری این اراضی میباشد . اراضی واحد 6 بعنوان معدن شن مورد بهره برداری قرار میگیرد که علاوه بر تشدید فرسایش بادی منطقه، باعث انتقال رسوبات بادی شور به اراضی کشاورزی مجاور میگردد ، توصیه میشود از بهره برداری این معادن بدون عملیات حفاظتی مناسب ، جلوگیری بعمل آید . خاک سطحی اراضی 1 ، 2 ، 12 و 15 شور قلیا با ساختمان تکدانه ای و بسیار حساس به فرسایش بادی میباشد سطح واحدهای 1 و 2 توسط سله نمکی به ضخامت 3 تا 4 میلیمتر پوشیده شده است که سطح خاک در واحد 1 صاف و فاقد ذرات لس ، در حالیکه در واحد 2 ، حالت پف کرده و دارای ذرات فرسایش پذیر لس میباشد سطح واحدهای 12 و 15 با لایه بسیار نازک سیل پوشیده شده است شدت فرسایش پذیری این واحدها ، زیاد تا خیلی زیاد میشود که نشان دهنده اهمیت بسیار زیاد سیل و سله سطحی در کاهش حساسیت اراضی به فرسایش بادی میباشد . لذا توصیه میشود در این اراضی از هرگونه عملیاتی که باعث تخریب سله سطحی میشود اجتناب گردد.