تعریف:
تابع f را متناوب گوئیم هرگاه وجود داشته باشد به طوری که:
کوچکترین مقدار مثبت t را در صورت وجود با T نشان داده و به آن دوره تناوب اصلی تابع گوئیم ( و و t بستگی به x ندارد) به عبارت دیگر در تابع متناوب دوره تناوب عبارت است از کوچکترین مقدار مثبت که وقتی به متغیر اضافه شود مقدار تابع فرق نکند.
دوره تناوب روی نمودار: قسمتی از نمودار که بر اساس آن بتوان قسمتهای دیگر را رسم کرد.(الگویی از یک نمودار میباشد)
دوره تناوب اساسی (اصلی) تابع زیر را حساب کنید.
مثال 1 :
(فرمول در فایل اصلی موجود است)
مثال 2 :
(فرمول در فایل اصلی موجود است)
مثال 3 :
مثال 4: دوره تناوب اصلی تابع را پیدا کنید.
(فرمول در فایل اصلی موجود است)
قرارداد:
هرجا صحبت از دوره تناوب می کنیم منظور دوره تناوب اصلی یا کوچکترین دوره تناوب تابع است.
نکته 1: تابع ثابت متناوب است و هر عدد حقیقی می تواند دوره تناوب آن باشد ولی کوچکترین دوره تناوب (دوره تناوب اصلی) ندارد.
نکته 2: در توابع ثابتی که به طور متوالی و منظم ناپیوسته هستند فاصله دو نقطه انفصال متوالی دوره تناوب اصلی تابع است.
مثال 5 :
(فرمول در فایل اصلی موجود است)
مثال 6 :
(فرمول در فایل اصلی موجود است)
مثال 7:
نکته 3:ممکن است مجموع، تفاضل و… دو تابع که هیچکدام متناوب نیستند متناوب باشد.
مثال 8: توابع هیچکدام متناوب نمی باشند ولی متناوب است، و میباشد.
نکته 4:(فرمول در فایل اصلی موجود است)
اگر دوره تناوب تابع برابر باشد آنگاه دوره تناوب تابع برابر است.
نتیجه: دوره تناوب برابر و دوره تناوب برابر خواهد بود.
نکته 5:
هرگاه عبارت داده شده به صورت مجمع دو یا چند تابع متناوب باشد ابتدا دوره تناوب هریک را بدست آورده سپس بین آنها کوچکترین مضرب مشترک می گیریم (ک.م.م)
مثال 9: دوره تناوب تابع با ضابطه کدام است؟
1) 2) 3) 4)
توجه:(فرمول در فایل اصلی موجود است)
در تعیین ک.م.م کسرها باید بین صورتها ک.م.م. و بین مخرج ها ب.م.م بگیریم نسبت آنها جواب مسئله است.
مثال 10: دوره تناوب تابع کدام است؟
1)2 2)3 3)5 4)6
نکته 6:(فرمول در فایل اصلی موجود است)
در بدست آوردن دوره تناوب بهتر است در صورت امکان آن را با اعمال مثلثاتی به صورت ساده تری تبدیل کرد سپس دوره تناوب شکل ساده شده را بدست می آوریم.