آنالیز شاخه ای از ریاضیات است که با اعداد حقیقی و اعداد مختلط و نیز توابع حقیقی و مختلط سر و کار دارد و به بررسی مفاهیمی از قبیل پیوستگی ،انتگرال گیری و مشق پذیری می پردازد
دنباله ای از توابع پیوسته مانند در فضای R که به صفر همگراست
تاریخچه
از نظر تاریخی آنالیز در قرن هفدهم با ابداع حساب دیفرانسیل و انتگرال توسط نیوتن و لایپ نیتس پایه ریزی شد در قرن هفدهم و هجدهم سر فصل های آنالیزی از قبیل حساب تغییرات،معادلات دیفرانسیل با مشتقات جزئی، آنالیز فوریه در زمینه های کاربردی توسعه فراوانی یافتند و از آنها به طور موفقیت آمیز در زمینه های صنعتی استفاده شد. در قرن هجدهم تعریف مفهوم تابع به یک موضوع بحث بر انگیز در ریاضیات تبدیل شد. در قرن نوزدهم کوشی با معرفی مفهوم سری های کوشی اولین کسی بود که حساب دیفرانسیل و انتگرال را بر یک پایه منطقی استوار کرد..
در اواسط قرن نوزدهم ریمان تئوری انتگرال گیری خود را که به انتگرال ریمان معروف است ارائه داد در اواخر قرن نوزدهم وایراشتراس مفهوم حد را معرفی کرد و نتایج کار خود بر روی سریها را نیز ارائه داد در همین دوران ریاضیدانان با تلاش های زیاد توانستند انتگرال ریمان را اصلاح نمایند .
در اوایل قرن بیستم هیلبرت برای حل معادلات انتگرال فضای هیلبرتی را تعریف و معرفی نمود.از آخرین تحولات در زمینه آنالیز می توان به پایه گذاری آنالیز تابعی توسط یک دانشمند لهستانی به نام باناچ نام برد.
تقسیم بندی آنالیز
آنالیز حقیقی: به مطالعه بر روی حد ها ،مشتقات،انتگرال ها سریهای توانی می پردازد.
آنالیز تابعی: به معرفی نظریه هایی از قبیل فضاهای باناچ و نیز فضای هیلبرت می پردازد.
آنالیز هارمونیک: در این شاخه از آنالیز سری های فوریه مورد مطالعه قرار می گیرد.
انالیز مختلط: به بررسی توابع مختلط و خواص این توابع از قبیل مشتق پذیری و انتگرال گیری می پردازد.
آنالیز نام عمومی آن بخشهائی از ریاضیات است که با مفاهیم حد و همگرایی مربوطاند و در آنها موضوعاتی مثل پیوستگی و انتگرالگیری و مشتقپذیری و توابع غیرجبری بررسی میشود. این موضوعات را معمولاً در عرصه اعداد حقیقی یا اعداد مختلط و توابع مربوط به آنها بحث میکنند ولی میتوان آنها را در هر فضائی از موجودات ریاضی که در آن مفهوم "نزدیکی" (فضای توپولوژیک) یا "فاصله" (فضای متریک) وجود دارد بهکار برد. آنالیز ریاضی از کوششهای مربوط به دقیق کردن مبانی و تعریفهای حسابان سر برآورده است.
انالیز ریاضی در واقع به نقاط استثنایی ریاضیات می پردازد . کلمه انالیز به همین معنی [: نقاط استثنایی] است .
مثلا در مورد انتگرال،انتگرال معمولی به انتگرال ریمان-اشتیل یس و انتگرال لبگ تعمیم می یابد. آنالیز ریاضی زمینه ای ظریف و دقیق است.در واقع حسابان قسمت کاربردی و بدون در نظر گرفتن جزییات آنالیز محسوب میشود.
آنالیز عددی
آنالیز عددی یا تحلیل عددی (Numerical analysis) به تنظیم، مطالعه، و اعمال شیوههای تقریبی محاسباتی برای حلّ آن دسته از مسائل ریاضیات پیوسته (در مقابل ریاضیات گسسته) میپردازد که با روشهای تحلیلی و دقیق قابل حلّ نیستند. برخی از مسائل مورد نظر محاسبات عددی به طور مستقیم از حسابان میآید. جبر خطی عددی (بر روی میدانهای حقیقی یا مختلط) و نیز حلّ معادلات دیفرانسیل خطّی و غیر خطّی مربوط به فیزیک و مهندسی از جملۀ زمینههای دیگر برای کاربرد محاسبات عددیست.
از آثار مکتوب بهجامانده چنین برمیآید که گویا نخستین رساله در حساب به معنی امروزی را محمد بن موسی الخوارزمی نوشته است. آوازهٔ وی چنان در اروپا پیچید که واژهٔ الگوریتم را (که از الخوارزمی گرفته شده است) بر روشهای حل مساله در محاسبات عددی نهادند.
با پیشرفت رایانهها نیاز به حل مسایل ریاضی به روش عددی بیش از پیش احساس شد. در این هنگام کارایی روشهایی که از قبل توسط نیوتون و اولر ارایه شده بود نمایان شد. ریاضیکارها و دانشگرهای دیگر نیز در این راه پا گذاشتند و روشهایی کاراتر ارایه دادند. به این ترتیب محاسبات عددی شکل نوین خود را یافت.
معرفی
تعدادی از مسائل ریاضیات پیوسته دقیقا با یک الگوریتم حل میشوند که به روشهای مستقیم حل مسئله معروفاند. برای مثال، روش حذف گوسی برای حل دستگاه معادلات خطی، و نیز روش سیمپلکس مورد استفاده در برنامهریزی خطی را میتوان ذکر نمود. در مقابل، برای بسیاری از مسائل روش حل مستقیم وجود ندارد و باید از روشهای دیگری مانند روش تکرارشونده استفاده شود.
برآورد خطا ها
تخمین خطا های موجود در حل مسائل از مهمترین قسمتهای محاسبات عددی است این خطاها در روشهای تکرارشونده وجود دارد چون به هرحال جوابهای تقریبی بهدست آمده با جواب دقیق مسئله، اختلاف دارد و یا وقتیکه از روشهای مستقیم برای حل مسئله استفاده میشود خطاهایی ناشی از گرد کردن اعداد بهوجود میآید. در محاسبات عددی میتوان مقدار خطا را درآخر روش که برای حل مسئله به کار میرود، تخمین زد.
کاربردها
الگوریتم های مربوط به محاسبات عددی در حل بسیاری از مسائل موجود در علوم و مهندسی مورد استفاده قرار میگیرد. ب